实现思路:使用OpenCV检测出头部位置,向上移动20像素添加虚拟帽子,帽子的宽度等于脸的大小,高度等比缩小,需要注意的是如果高度小于脸部向上移动20像素的值,那么帽子的高度就等于最小高度=(脸部位置-20)。 为什么是20而不是30或者40,因为取得是检测的脸部和头顶的一般距离20,开发者可自己调整。
注意事项
图片合成元件,要是黑背景图片,透明的图片也会有问题,在ps手动处理一下透明图片,添加新图层,选中alt+d添加黑背景,把新图层层级放到最底部即可。
#coding=utf-8
import cv2
# OpenCV人脸识别分类器
classifier = cv2.CascadeClassifier(
"C:\Python36\Lib\site-packages\opencv-master\data\haarcascades\haarcascade_frontalface_default.xml"
)
img = cv2.imread("img/ag-3.png") # 读取图片
imgCompose = cv2.imread("img/compose/maozi-1.png")
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 转换灰色
color = (0, 255, 0) # 定义绘制颜色
# 调用识别人脸
faceRects = classifier.detectMultiScale(
gray, scaleFactor=1.2, minNeighbors=3, minSize=(32, 32))
if len(faceRects): # 大于0则检测到人脸
for faceRect in faceRects:
x, y, w, h = faceRect
sp = imgCompose.shape
imgComposeSizeH = int(sp[0]/sp[1]*w)
if imgComposeSizeH>(y-20):
imgComposeSizeH=(y-20)
imgComposeSize = cv2.resize(imgCompose,(w, imgComposeSizeH), interpolation=cv2.INTER_NEAREST)
top = (y-imgComposeSizeH-20)
if top<=0:
top=0
rows, cols, channels = imgComposeSize.shape
roi = img[top:top+rows,x:x+cols]
# Now create a mask of logo and create its inverse mask also
img2gray = cv2.cvtColor(imgComposeSize, cv2.COLOR_RGB2GRAY)
ret, mask = cv2.threshold(img2gray, 10, 255, cv2.THRESH_BINARY)
mask_inv = cv2.bitwise_not(mask)
# Now black-out the area of logo in ROI
img1_bg = cv2.bitwise_and(roi, roi, mask=mask_inv)
# Take only region of logo from logo image.
img2_fg = cv2.bitwise_and(imgComposeSize, imgComposeSize, mask=mask)
# Put logo in ROI and modify the main image
dst = cv2.add(img1_bg, img2_fg)
img[top:top+rows, x:x+cols] = dst
cv2.imshow("image", img)
cv2.waitKey(0)
cv2.destroyAllWindows()