forked from MulongXie/UIED
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_single.py
89 lines (73 loc) · 3.76 KB
/
run_single.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
from os.path import join as pjoin
import cv2
import os
import numpy as np
def resize_height_by_longest_edge(img_path, resize_length=800):
org = cv2.imread(img_path)
height, width = org.shape[:2]
if height > width:
return resize_length
else:
return int(resize_length * (height / width))
def color_tips():
color_map = {'Text': (0, 0, 255), 'Compo': (0, 255, 0), 'Block': (0, 255, 255), 'Text Content': (255, 0, 255)}
board = np.zeros((200, 200, 3), dtype=np.uint8)
board[:50, :, :] = (0, 0, 255)
board[50:100, :, :] = (0, 255, 0)
board[100:150, :, :] = (255, 0, 255)
board[150:200, :, :] = (0, 255, 255)
cv2.putText(board, 'Text', (10, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 2)
cv2.putText(board, 'Non-text Compo', (10, 70), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 2)
cv2.putText(board, "Compo's Text Content", (10, 120), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 2)
cv2.putText(board, "Block", (10, 170), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 2)
cv2.imshow('colors', board)
if __name__ == '__main__':
'''
ele:min-grad: gradient threshold to produce binary map
ele:ffl-block: fill-flood threshold
ele:min-ele-area: minimum area for selected elements
ele:merge-contained-ele: if True, merge elements contained in others
text:max-word-inline-gap: words with smaller distance than the gap are counted as a line
text:max-line-gap: lines with smaller distance than the gap are counted as a paragraph
Tips:
1. Larger *min-grad* produces fine-grained binary-map while prone to over-segment element to small pieces
2. Smaller *min-ele-area* leaves tiny elements while prone to produce noises
3. If not *merge-contained-ele*, the elements inside others will be recognized, while prone to produce noises
4. The *max-word-inline-gap* and *max-line-gap* should be dependent on the input image size and resolution
mobile: {'min-grad':4, 'ffl-block':5, 'min-ele-area':50, 'max-word-inline-gap':6, 'max-line-gap':1}
web : {'min-grad':3, 'ffl-block':5, 'min-ele-area':25, 'max-word-inline-gap':4, 'max-line-gap':4}
'''
key_params = {'min-grad':10, 'ffl-block':5, 'min-ele-area':50, 'merge-contained-ele':True,
'max-word-inline-gap':10, 'max-line-ingraph-gap':4, 'remove-top-bar':True}
# set input image path
input_path_img = 'data/input/7.jpg'
output_root = 'data/output'
resized_height = resize_height_by_longest_edge(input_path_img, resize_length=800)
color_tips()
is_ip = True
is_clf = False
is_ocr = True
is_merge = True
if is_ocr:
import detect_text.text_detection as text
os.makedirs(pjoin(output_root, 'ocr'), exist_ok=True)
text.text_detection(input_path_img, output_root, show=True)
if is_ip:
import detect_compo.ip_region_proposal as ip
os.makedirs(pjoin(output_root, 'ip'), exist_ok=True)
# switch of the classification func
classifier = None
if is_clf:
classifier = {}
from cnn.CNN import CNN
# classifier['Image'] = CNN('Image')
classifier['Elements'] = CNN('Elements')
# classifier['Noise'] = CNN('Noise')
ip.compo_detection(input_path_img, output_root, key_params,
classifier=classifier, resize_by_height=resized_height, show=True)
if is_merge:
import detect_merge.merge as merge
name = input_path_img.split('/')[-1][:-4]
compo_path = pjoin(output_root, 'ip', str(name) + '.json')
ocr_path = pjoin(output_root, 'ocr', str(name) + '.json')
merge.merge(input_path_img, compo_path, ocr_path, output_root, is_remove_top=key_params['remove-top-bar'], show=True)