forked from teticio/Deej-AI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
MP3ToVec.py
197 lines (193 loc) · 8.7 KB
/
MP3ToVec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import warnings
warnings.filterwarnings("ignore")
import tensorflow as tf
from keras.models import load_model
import os
import numpy as np
import librosa
import pickle
from tqdm import tqdm
import argparse
import random
def walkmp3s(folder):
for dirpath, dirs, files in os.walk(folder, topdown=False):
for filename in files:
if filename[-3:].lower() == 'mp3' or filename[-3:].lower() == 'm4a':
yield filename, os.path.abspath(os.path.join(dirpath, filename))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('pickles', type=str, help='Directory of pickled TrackToVecs')
parser.add_argument('mp3tovec', type=str, help='Output filename (without extension) of pickled MP3ToVecs')
parser.add_argument('--scan', type=str, help='Directory of MP3s and M4As to scan')
parser.add_argument('--model', type=str, help='Load spectrogram to Track2Vec model (default: "speccy_model")')
parser.add_argument('--batchsize', type=int, help='Number of MP3s to process in each batch (default: 100)')
parser.add_argument('--epsilon', type=float, help='Epsilon distance (default: 0.001)')
args = parser.parse_args()
mp3_directory = args.scan
dump_directory = args.pickles
mp3tovec_file = args.mp3tovec
model_file = args.model
batch_size = args.batchsize
epsilon_distance = args.epsilon
if model_file == None:
model_file = 'speccy_model'
if batch_size == None:
batch_size = 100
if epsilon_distance == None:
epsilon_distance = 0.001 # should be small, but not too small
if not os.path.isdir(dump_directory + '/mp3tovecs'):
os.makedirs(dump_directory + '/mp3tovecs')
if mp3_directory is not None:
print(f'Creating Track2Vec matrices')
model = load_model(
model_file,
custom_objects={
'cosine_proximity':
tf.compat.v1.keras.losses.cosine_proximity
})
sr = 22050
n_fft = 2048
hop_length = 512
n_mels = model.layers[0].input_shape[0][1]
slice_size = model.layers[0].input_shape[0][2]
slice_time = slice_size * hop_length / sr
files = []
done = os.listdir(dump_directory)
for filename, full_path in walkmp3s(mp3_directory):
pickle_filename = (full_path[:-3]).replace('\\', '_').replace('/', '_').replace(':','_') + 'p'
if pickle_filename in done:
continue
files.append((pickle_filename, full_path))
random.shuffle(files)
try:
with tqdm(files, unit="file") as t:
for pickle_filename, full_path in t:
try:
y, sr = librosa.load(full_path, mono=True)
if y.shape[0] < slice_size:
print(f'Skipping {full_path}')
continue
S = librosa.feature.melspectrogram(y=y, sr=sr, n_fft=n_fft, hop_length=hop_length, n_mels=n_mels, fmax=sr/2)
x = np.ndarray(shape=(S.shape[1] // slice_size, n_mels, slice_size, 1), dtype=float)
for slice in range(S.shape[1] // slice_size):
log_S = librosa.power_to_db(S[:, slice * slice_size : (slice+1) * slice_size], ref=np.max)
if np.max(log_S) - np.min(log_S) != 0:
log_S = (log_S - np.min(log_S)) / (np.max(log_S) - np.min(log_S))
x[slice, :, :, 0] = log_S
pickle.dump((full_path, model.predict(x, verbose=0)), open(dump_directory + '/' + pickle_filename, 'wb'))
except KeyboardInterrupt:
raise
except:
print(f'Skipping {full_path}')
continue
except KeyboardInterrupt:
t.close() # stop the progress bar from sprawling all over the place after a keyboard interrupt
raise
t.close()
mp3tovecs_fullpath = dump_directory + f'/mp3tovecs/{mp3tovec_file}.p'
if os.path.isfile(mp3tovecs_fullpath):
mp3tovecs = pickle.load(open(mp3tovecs_fullpath, 'rb'))
else:
mp3tovecs = {}
unpickled = {}
for filename in os.listdir(dump_directory):
if not os.path.isfile(dump_directory + '/' + filename):
continue
try:
p = pickle.load(open(dump_directory + '/' + filename, 'rb'))
if p[0] in mp3tovecs:
continue
except:
print(f'Skipping pickle {filename}')
continue
unpickled[p[0]] = p[1]
total_num_mp3s = len(unpickled)
start_batch = 1
for filename in os.listdir(dump_directory + '/mp3tovecs'):
if filename[:len(mp3tovec_file)] == mp3tovec_file and filename[len(mp3tovec_file)+1:-2].isdigit():
mp3tovec = pickle.load(open(dump_directory + '/mp3tovecs/' + filename, 'rb'))
start_batch += 1
for mp3 in mp3tovec:
mp3tovecs[mp3] = mp3tovec[mp3]
remaining_mp3s = []
for mp3 in unpickled:
if mp3 not in mp3tovecs:
remaining_mp3s.append(mp3)
num_mp3s = len(remaining_mp3s)
indices = np.random.permutation(num_mp3s)
for batch in range(num_mp3s//batch_size + 1):
print(f'Creating MP3ToVecs for batch {start_batch + batch}/{total_num_mp3s//batch_size + 1}')
mp3s = {}
for i in range(batch_size):
if batch * batch_size + i >= len(indices):
break
index = indices[batch * batch_size + i]
mp3s[remaining_mp3s[index]] = unpickled[remaining_mp3s[index]]
mp3_vecs = []
mp3_indices = {}
for mp3 in mp3s:
mp3_indices[mp3] = []
for mp3_vec in mp3s[mp3]:
mp3_indices[mp3].append(len(mp3_vecs))
mp3_vecs.append(mp3_vec / np.linalg.norm(mp3_vec)) # normalize
num_mp3_vecs = len(mp3_vecs)
# this takes up a lot of memory
cos_distances = np.ndarray((num_mp3_vecs, num_mp3_vecs), dtype=np.float16)
print(f'Precalculating cosine distances')
# this needs speeding up
try:
with tqdm(mp3_vecs, unit="vector") as t:
for i, mp3_vec_i in enumerate(t):
for j , mp3_vec_j in enumerate(mp3_vecs):
if i > j:
cos_distances[i, j] = cos_distances[j, i] # I've been here before
elif i < j:
cos_distances[i, j] = 1 - np.dot(mp3_vec_i, mp3_vec_j)
else:
cos_distances[i, j] = 0 # i == j
except KeyboardInterrupt:
t.close() # stop the progress bar from sprawling all over the place after a keyboard interrupt
raise
t.close()
print(f'Calculating IDF weights')
idfs = []
try:
with tqdm(range(num_mp3_vecs), unit="vector") as t:
for i in t:
idf = 0
for mp3 in mp3s:
for j in mp3_indices[mp3]:
if cos_distances[i, j] < epsilon_distance:
idf += 1
break
idfs.append(-np.log(idf / len(mp3s)))
except KeyboardInterrupt:
t.close() # stop the progress bar from sprawling all over the place after a keyboard interrupt
raise
t.close()
print(f'Calculating TF weights')
mp3tovec = {}
try:
with tqdm(mp3s, unit="mp3") as t:
for mp3 in t:
vec = 0
for i in mp3_indices[mp3]:
tf = 0
for j in mp3_indices[mp3]:
if cos_distances[i, j] < epsilon_distance:
tf += 1
vec += mp3_vecs[i] * tf * idfs[i]
mp3tovec[mp3] = vec
mp3tovecs[mp3] = vec
except KeyboardInterrupt:
t.close() # stop the progress bar from sprawling all over the place after a keyboard interrupt
raise
t.close()
pickle.dump(mp3tovec, open(dump_directory + f'/mp3tovecs/{mp3tovec_file}_{start_batch + batch}.p', 'wb'))
# free up memory
del cos_distances
cos_distances = None
pickle.dump(mp3tovecs, open(mp3tovecs_fullpath, 'wb'))
for filename in os.listdir(dump_directory + '/mp3tovecs'):
if filename[:len(mp3tovec_file)] == mp3tovec_file and filename[len(mp3tovec_file)+1:-2].isdigit():
os.remove(dump_directory + '/mp3tovecs/' + filename)