-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathmulticonv_test.py
192 lines (145 loc) · 5.72 KB
/
multiconv_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
#!/usr/bin/env python3
# Copyright (c) 2020 Graphcore Ltd. All rights reserved.
from io import StringIO
import json
import pytest
import torch
from torch import nn
import helpers
import poptorch
def getPopartMultiConvs(poptorch_model):
ir_as_json = json.load(StringIO(poptorch_model._debugGetPopartIR())) # pylint: disable=protected-access
assert "maingraph" in ir_as_json, "Expected maingraph in serialized IR."
r = []
for op in ir_as_json["maingraph"]:
if op["type"] == "MultiConv":
r.append(op)
return r
def assert_contains_multiconv(poptorch_model, expected_num=1):
num_multiconv = len(getPopartMultiConvs(poptorch_model))
msg = (f"Wrong number of MultiConv ops.\n"
f" Expected : {expected_num}\n"
f" Actual : {num_multiconv}.")
assert num_multiconv == expected_num, msg
@pytest.mark.parametrize("num_layers", [1, 2, 3])
def test_multiconv_basic(num_layers):
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
self.convA = nn.Conv2d(1, 1, 5)
self.convB = nn.Conv2d(1, 1, 5, bias=False)
def forward(self, x):
with poptorch.MultiConv():
a = self.convA(x)
absx = torch.abs(x)
b = self.convB(absx)
return a + b
m = [Model() for i in range(num_layers)]
m = torch.nn.Sequential(*m)
torch.manual_seed(0)
input = torch.randn(2, 1, 28, 28)
native = m(input)
poptorch_model = poptorch.inferenceModel(m)
poptorch_out = poptorch_model(input)
assert_contains_multiconv(poptorch_model, num_layers)
for cpu, pop in zip(native, poptorch_out):
helpers.assert_allclose(expected=cpu, actual=pop)
def multiconv_harness(multiconv):
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1, 10, 5)
self.conv2 = nn.Conv2d(1, 10, 5)
self.MultiConv = multiconv
def forward(self, x):
y = torch.pow(x, 2)
with self.MultiConv:
u = self.conv1(x)
v = self.conv2(y)
return u - v
m = Model()
torch.manual_seed(0)
x = torch.randn(2, 1, 28, 28)
native = m(x)
poptorch_model = poptorch.inferenceModel(m)
poptorch_out = poptorch_model(x)
helpers.assert_allclose(expected=native, actual=poptorch_out)
assert_contains_multiconv(poptorch_model)
def test_multiconv_options_broadcast():
multiconv = (
poptorch.MultiConv().availableMemoryProportions(0.8).partialsTypes(
torch.float).planType(
poptorch.MultiConvPlanType.Parallel).perConvReservedTiles(
100).cycleBackOff(0.3)).enableConvDithering(True)
multiconv_harness(multiconv)
def test_multiconv_options_per_conv():
partials_types = [torch.float, torch.float]
multiconv = (poptorch.MultiConv().availableMemoryProportions(
(0.8, 0.7)).partialsTypes(partials_types).planType(
poptorch.MultiConvPlanType.Parallel).perConvReservedTiles(
120).cycleBackOff(0.4)).enableConvDithering(True)
multiconv_harness(multiconv)
def test_multiconv_layers():
class Network(nn.Module):
def __init__(self):
super().__init__()
self.layer1A = nn.Sequential(nn.Conv2d(1, 10, 5), nn.MaxPool2d(2),
nn.ReLU())
self.layer1B = nn.Sequential(nn.Conv2d(1, 10, 5), nn.MaxPool2d(2),
nn.ReLU())
self.layer2 = nn.Sequential(nn.Conv2d(10, 20, 5), nn.MaxPool2d(2),
nn.ReLU())
self.layer3 = nn.Linear(320, 256)
self.layer3_act = nn.ReLU()
self.layer4 = nn.Linear(256, 10)
self.softmax = nn.LogSoftmax(1)
def forward(self, x):
with poptorch.MultiConv():
absx = torch.abs(x)
y = self.layer1A(absx)
z = self.layer1B(x)
x = y + z
x = self.layer2(x)
x = x.view(-1, 320)
x = self.layer3_act(self.layer3(x))
x = self.layer4(x)
x = self.softmax(x)
return x
model = Network()
# Run on CPU.
input = torch.randn(2, 1, 28, 28)
native_out = model(input)
poptorch_model = poptorch.inferenceModel(model)
poptorch_out = poptorch_model(input)
assert_contains_multiconv(poptorch_model)
helpers.assert_allclose(actual=poptorch_out, expected=native_out)
def test_invalid_multiconv_nested():
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv = nn.Conv2d(1, 10, 10)
def forward(self, x):
with poptorch.MultiConv():
with poptorch.MultiConv():
return self.conv(x)
m = Model()
poptorch_model = poptorch.inferenceModel(m)
msg = "Nested poptorch.MultiConv is not supported"
with pytest.raises(poptorch.Error, match=msg):
poptorch_model(torch.zeros(2, 1, 32, 32))
def test_invalid_multiconv_empty():
class Model(torch.nn.Module):
def forward(self, x):
with poptorch.MultiConv():
return torch.pow(x, 2)
m = Model()
poptorch_model = poptorch.inferenceModel(m)
msg = "Unexpected end_multi_conv"
with pytest.raises(poptorch.Error, match=msg):
poptorch_model(torch.ones(2, 2))
def test_invalid_multiconv_options():
mc = poptorch.MultiConv()
with pytest.raises(ValueError, match="Invalid partials types"):
mc.partialsTypes("half")
with pytest.raises(AssertionError, match="Invalid plan type"):
mc.planType("parallel")