-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathpoplar_executor_test.py
496 lines (376 loc) · 15.6 KB
/
poplar_executor_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
#!/usr/bin/env python3
# Copyright (c) 2020 Graphcore Ltd. All rights reserved.
import datetime
import unittest.mock
import os
import re
import tempfile
import glob
import warnings
import pytest
import torch
import torch.multiprocessing as mp
import helpers
import poptorch
@pytest.mark.ipuHardwareRequired
@helpers.printCapfdOnExit
@helpers.overridePoptorchLogLevel("DEBUG")
def test_ExecutableCaching(capfd):
class Model(torch.nn.Module):
def forward(self, x):
return x * 6
with tempfile.TemporaryDirectory() as cache:
opts = poptorch.Options()
opts.enableExecutableCaching(cache)
m = poptorch.inferenceModel(Model(), opts)
m.compile(torch.rand(2, 3))
m.destroy()
log = helpers.LogChecker(capfd)
log.assert_contains("set enableEngineCaching to value true")
assert len(os.listdir(cache)) == 1, "No executable saved in the cache"
n = poptorch.inferenceModel(Model(), opts)
n.compile(torch.rand(2, 3))
log = helpers.LogChecker(capfd)
log.assert_contains("set enableEngineCaching to value true")
@pytest.mark.ipuHardwareRequired
@helpers.printCapfdOnExit
@helpers.overridePoptorchLogLevel("DEBUG")
def test_ExecutableCaching_env(capfd):
class Model(torch.nn.Module):
def forward(self, x):
return x * 6
with tempfile.TemporaryDirectory() as cache:
os.environ["POPTORCH_CACHE_DIR"] = cache
opts = poptorch.Options()
m = poptorch.inferenceModel(Model(), opts)
m.compile(torch.rand(2, 3))
m.destroy()
log = helpers.LogChecker(capfd)
log.assert_contains("set enableEngineCaching to value true")
assert len(os.listdir(cache)) == 1, "No executable saved in the cache"
n = poptorch.inferenceModel(Model(), opts)
n.compile(torch.rand(2, 3))
log = helpers.LogChecker(capfd)
log.assert_contains("set enableEngineCaching to value true")
class Network(torch.nn.Module):
def forward(self, x, y):
return x + y
def _create_model_and_export(opts, filename):
model = Network()
inference_model = poptorch.inferenceModel(model, opts)
x = torch.ones(2)
y = torch.zeros(2)
inference_model.compileAndExport(filename, x, y)
assert os.path.exists(filename)
@unittest.mock.patch.dict("os.environ", helpers.disableAllModels())
def test_offline_ipu_compileAndExport_file(filename=None):
# Force-disable the IPU model
opts = poptorch.Options().useOfflineIpuTarget()
with tempfile.TemporaryDirectory() as tmp:
filename = os.path.join(tmp, "model.poptorch")
_create_model_and_export(opts, filename)
@pytest.mark.ipuHardwareRequired
def test_precompile_then_load():
opts = poptorch.Options().useOfflineIpuTarget(
poptorch.ipuHardwareVersion())
with tempfile.TemporaryDirectory() as tmp:
filename = os.path.join(tmp, "model.poptorch")
_create_model_and_export(opts, filename)
poptorch_model = poptorch.load(filename)
x = torch.tensor([1., 2.])
y = torch.tensor([3., 4.])
# Check the user model was restored
helpers.assert_allclose(actual=poptorch_model.model(x, y),
expected=torch.tensor([4., 6.]))
helpers.assert_allclose(actual=poptorch_model(x, y),
expected=torch.tensor([4., 6.]))
@unittest.mock.patch.dict("os.environ", helpers.disableAllModels())
def test_offline_ipu_compileAndExport_dir():
class Network(torch.nn.Module):
def forward(self, x, y):
return x + y
model = Network()
# Force-disable the IPU model
opts = poptorch.Options().useOfflineIpuTarget()
poptorch.inferenceModel(model, opts)
inference_model = poptorch.inferenceModel(model, opts)
x = torch.ones(2)
y = torch.zeros(2)
with tempfile.TemporaryDirectory() as tmp:
assert os.path.isdir(tmp)
# Model is local to the function: it cannot be serialised so don't
# export it.
inference_model.compileAndExport(tmp, x, y, export_model=False)
files = glob.glob(f"{tmp}/*")
assert len(files) == 1, "Expected exactly 1 file"
def test_inference_attributes():
class Model(torch.nn.Module):
def __init__(self, attr):
super().__init__()
self.attr = attr
def getAttr(self):
return self.attr
def forward(self, x, y):
return x + y + 5
poptorch_model = poptorch.inferenceModel(Model("MyAttr"))
t1 = torch.tensor([1.])
t2 = torch.tensor([2.])
poptorch_model(t1, t2)
assert poptorch_model.getAttr() == poptorch_model.attr
assert poptorch_model.attr == "MyAttr"
def test_training_attributes():
def custom_loss(output, target):
# Mean squared error with a scale
loss = output - target
loss = loss * loss * 5
return poptorch.identity_loss(loss, reduction="mean")
class Model(torch.nn.Module):
def __init__(self, attr):
super().__init__()
self.bias = torch.nn.Parameter(torch.zeros(()))
self.attr = attr
def getAttr(self):
return self.attr
def forward(self, x, target):
x = x + 1
x = poptorch.ipu_print_tensor(x) + self.bias
return x, custom_loss(x, target)
model = Model("MyAttr")
input = torch.tensor([1.0, 2.0, 3.0])
target = torch.tensor([30.0, 40.0, 50.0])
poptorch_model = poptorch.trainingModel(model)
poptorch_model(input, target)
assert poptorch_model.getAttr() == poptorch_model.attr
assert poptorch_model.attr == "MyAttr"
@pytest.mark.ipuHardwareRequired
@pytest.mark.parametrize("use_half", [False])
def test_explicit_destroy(use_half):
class ExampleModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.bias = torch.nn.Parameter(torch.zeros(()))
def forward(self, x):
x = x + 1
# It is important to make sure the result of the print is used.
x = poptorch.ipu_print_tensor(x)
return x + self.bias
def custom_loss(output, target):
# Mean squared error with a scale
loss = output - target
loss = loss * loss * 5
return poptorch.identity_loss(loss, reduction="mean")
class ExampleModelWithCustomLoss(torch.nn.Module):
def __init__(self):
super().__init__()
self.model = ExampleModel()
def forward(self, input, target=None):
out = self.model(input)
if target is not None:
return out, custom_loss(out, target)
return out
opts = poptorch.Options()
# Both models will use the same IPU device.
opts.useIpuId(1)
model = ExampleModelWithCustomLoss()
input = torch.tensor([1.0, 2.0, 3.0])
target = torch.tensor([30.0, 40.0, 50.0])
if use_half:
model.half()
input = input.half()
target = target.half()
training_model = poptorch.trainingModel(model, opts)
inference_model = poptorch.inferenceModel(model, opts)
training_model(input=input, target=target)
training_model.destroy()
error_msg = r"Model has not been compiled or has been destroyed."
with pytest.raises(poptorch.Error, match=error_msg):
training_model.copyWeightsToHost()
with pytest.raises(poptorch.Error, match=error_msg):
training_model.copyWeightsToDevice()
inference_model(input)
def _compile_model_offline(cache, pid, num_processes):
poptorch.setLogLevel("DEBUG") # Force debug logging in worker process
opts = poptorch.Options().useOfflineIpuTarget()
opts.enableExecutableCaching(cache)
# Disable compilation bar to avoid issues with capfd
opts.showCompilationProgressBar(False)
opts.deviceIterations(10)
opts.Distributed.configureProcessId(pid, num_processes)
class ModelWithLoss(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear = torch.nn.Linear(10, 10)
self.loss = torch.nn.CrossEntropyLoss()
def forward(self, data, target):
out = self.linear(data)
loss = self.loss(out, target)
return out, loss
model = ModelWithLoss()
poptorch_model = poptorch.trainingModel(model, options=opts)
# 10 Batches of 10.
input = torch.randn(10, 10)
# 10 batches of 1
label = torch.randint(0, 10, [1])
label = label.expand([10])
poptorch_model.compile(input, label)
# Force-disable the IPU model
@unittest.mock.patch.dict("os.environ", helpers.disableAllModels())
@helpers.printCapfdOnExit
def test_distributed_compile(capfd):
num_processes = 6
with tempfile.TemporaryDirectory() as tmp:
cache = os.path.join(tmp, "poptorch_cache")
ctx = mp.get_context('spawn')
processes = [
ctx.Process(target=_compile_model_offline,
args=(cache, pid, num_processes))
for pid in range(num_processes)
]
for p in processes:
p.start()
for p in processes:
p.join()
def getTimestamp(line):
m = re.match(r"\[([\d:.]+)\]", line)
return datetime.datetime.strptime(m.group(1), "%H:%M:%S.%f")
log = helpers.LogChecker(capfd).createIterator()
includes_compilation = True
for p in processes:
start = getTimestamp(log.findNext("cache file locked"))
end = getTimestamp(log.findNext("released the cache lock"))
if includes_compilation:
assert end - start > datetime.timedelta(seconds=1), (
"Expected the"
" first process model compilation to take more than 1 "
f"second but it took {end - start}")
else:
assert end - start < datetime.timedelta(seconds=1), (
"Expected "
"processes to load the executable from the cache in under"
f" 1 second but it took {end - start}")
includes_compilation = False
def test_cpu_output():
const1 = torch.tensor([1, 2])
const2 = torch.tensor([3, 4])
class Model(torch.nn.Module):
def forward(self):
return (const1 + const2, ([const1, const2], [const1,
const2]), const2)
model = Model()
with warnings.catch_warnings(record=True) as filtered_warnings:
poptorch.inferenceModel(model).compile()
pop_warns = set(str(w.message) for w in filtered_warnings)
expected_warning = "Output expected to be on the IPU but is on cpu"
for r in pop_warns:
assert expected_warning in r, (f"Compilation generated unexpected "
f"warning.\nActual warning: {r}")
@pytest.mark.ipuHardwareRequired
def test_get_cycles_error_msgs():
class Model(torch.nn.Module):
def forward(self, x, y):
return x + y
inference_model = poptorch.inferenceModel(Model())
error_msg = (r"Cycle count logging is disabled. Please set option "
r"logCycleCount to True to enable.")
with pytest.raises(poptorch.Error, match=error_msg):
inference_model.cycleCount()
opts = poptorch.Options()
opts.logCycleCount(True)
inference_model = poptorch.inferenceModel(Model(), options=opts)
error_msg = (r"Please run the model at least once before obtaining cycle "
r"count.")
with pytest.raises(poptorch.Error, match=error_msg):
inference_model.cycleCount()
inference_model.compile(torch.Tensor([1.0]), torch.Tensor([2.0]))
error_msg = (r"Please run the model at least once before obtaining cycle "
r"count.")
with pytest.raises(poptorch.Error, match=error_msg):
inference_model.cycleCount()
inference_model(torch.Tensor([3.0]), torch.Tensor([4.0]))
assert inference_model.cycleCount() > 0
@pytest.mark.skipif(poptorch.ipuHardwareIsAvailable(),
reason="Test error message when no hardware")
def test_get_cycles_no_hw():
class Model(torch.nn.Module):
def forward(self, x, y):
return x + y
inference_model = poptorch.inferenceModel(Model())
opts = poptorch.Options()
opts.logCycleCount(True)
inference_model = poptorch.inferenceModel(Model(), options=opts)
error_msg = (
r"Cycle count logging is only supported on actual IPU hardware.")
with pytest.raises(poptorch.Error, match=error_msg):
inference_model(torch.Tensor([3.0]), torch.Tensor([4.0]))
def test_get_compilation_time():
class Model(torch.nn.Module):
def forward(self, x, y):
return x + y
no_compilation_time_opts = poptorch.Options()
no_compilation_time_opts.showCompilationProgressBar(False)
no_compilation_time_model = poptorch.inferenceModel(
Model(), options=no_compilation_time_opts)
compilation_time_opts = poptorch.Options()
compilation_time_opts.showCompilationProgressBar(True)
compilation_time_model = poptorch.inferenceModel(
Model(), options=compilation_time_opts)
error_msg = (
r"Please compile the model before obtaining compilation time.")
with pytest.raises(poptorch.Error, match=error_msg):
no_compilation_time_model.compilationTime()
with pytest.raises(poptorch.Error, match=error_msg):
compilation_time_model.compilationTime()
error_msg = (
r"Please set showCompilationProgressBar option to obtain compilation "
r"time.")
with pytest.raises(poptorch.Error, match=error_msg):
no_compilation_time_model(torch.Tensor([3.0]), torch.Tensor([4.0]))
no_compilation_time_model.compilationTime()
compilation_time_model(torch.Tensor([3.0]), torch.Tensor([4.0]))
compilation_time = compilation_time_model.compilationTime()
assert compilation_time > datetime.timedelta(seconds=1)
@pytest.mark.parametrize("rewrap_executor", [True, False])
def test_rewrap_model(rewrap_executor):
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
self.fc = torch.nn.Linear(1, 1)
self.loss = torch.nn.L1Loss()
def forward(self, x):
y = self.fc(x)
loss = self.loss(y, x + 1)
return loss
model = Model()
# Normal running
torch.nn.init.ones_(model.fc.weight)
torch.nn.init.zeros_(model.fc.bias)
opts = poptorch.Options()
opts.deviceIterations(10)
poptorch_model = poptorch.trainingModel(model, options=opts)
poptorch_model(torch.ones([10]))
bias_after_1000 = float(model.fc.bias)
# Try rewrapping model half way
torch.nn.init.ones_(model.fc.weight)
torch.nn.init.zeros_(model.fc.bias)
with pytest.raises(AssertionError):
helpers.assert_allclose(actual=model.fc.bias, expected=bias_after_1000)
model.destroy()
opts = poptorch.Options()
opts.deviceIterations(5)
poptorch_model = poptorch.trainingModel(model, options=opts)
poptorch_model(torch.ones([5]))
err_msg = (r"Model has already been wrapped in 'poptorch.trainingModel'."
r" Call model.destroy\(\) on the model to unwrap before "
"wrapping again.")
with pytest.raises(RuntimeError, match=err_msg):
poptorch_model = poptorch.trainingModel(model, options=opts)
# re-wrap for test
if rewrap_executor:
poptorch_model.destroy()
poptorch_model = poptorch.trainingModel(poptorch_model, options=opts)
else:
model.destroy()
poptorch_model = poptorch.trainingModel(model, options=opts)
poptorch_model(torch.ones([5]))
helpers.assert_allclose(actual=float(model.fc.bias),
expected=bias_after_1000)