forked from huggingface/transformers
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_modeling_lxmert.py
752 lines (668 loc) · 28.5 KB
/
test_modeling_lxmert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
# coding=utf-8
# Copyright 2018 LXMERT Authors, The Hugging Face Team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import unittest
import numpy as np
from transformers import is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from .test_configuration_common import ConfigTester
from .test_modeling_common import ModelTesterMixin, ids_tensor
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
LxmertConfig,
LxmertForPreTraining,
LxmertForQuestionAnswering,
LxmertModel,
)
from transformers.models.lxmert.modeling_lxmert import LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST
class LxmertModelTester:
"""You can also import this e.g from .test_modeling_bart import BartModelTester"""
def __init__(
self,
parent,
vocab_size=300,
hidden_size=28,
num_attention_heads=2,
num_labels=2,
intermediate_size=64,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
pad_token_id=0,
num_qa_labels=30,
num_object_labels=16,
num_attr_labels=4,
num_visual_features=10,
l_layers=2,
x_layers=1,
r_layers=1,
visual_feat_dim=128,
visual_pos_dim=4,
visual_loss_normalizer=6.67,
seq_length=20,
batch_size=4,
is_training=True,
task_matched=True,
task_mask_lm=True,
task_obj_predict=True,
task_qa=True,
visual_obj_loss=True,
visual_attr_loss=True,
visual_feat_loss=True,
use_token_type_ids=True,
use_lang_mask=True,
output_attentions=False,
output_hidden_states=False,
scope=None,
):
self.parent = parent
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_attention_heads = num_attention_heads
self.num_labels = num_labels
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.pad_token_id = pad_token_id
self.num_qa_labels = num_qa_labels
self.num_object_labels = num_object_labels
self.num_attr_labels = num_attr_labels
self.l_layers = l_layers
self.x_layers = x_layers
self.r_layers = r_layers
self.visual_feat_dim = visual_feat_dim
self.visual_pos_dim = visual_pos_dim
self.visual_loss_normalizer = visual_loss_normalizer
self.seq_length = seq_length
self.batch_size = batch_size
self.is_training = is_training
self.use_lang_mask = use_lang_mask
self.task_matched = task_matched
self.task_mask_lm = task_mask_lm
self.task_obj_predict = task_obj_predict
self.task_qa = task_qa
self.visual_obj_loss = visual_obj_loss
self.visual_attr_loss = visual_attr_loss
self.visual_feat_loss = visual_feat_loss
self.num_visual_features = num_visual_features
self.use_token_type_ids = use_token_type_ids
self.output_attentions = output_attentions
self.output_hidden_states = output_hidden_states
self.scope = scope
self.num_hidden_layers = {"vision": r_layers, "cross_encoder": x_layers, "language": l_layers}
def prepare_config_and_inputs(self):
output_attentions = self.output_attentions
input_ids = ids_tensor([self.batch_size, self.seq_length], vocab_size=self.vocab_size)
visual_feats = torch.rand(self.batch_size, self.num_visual_features, self.visual_feat_dim, device=torch_device)
bounding_boxes = torch.rand(self.batch_size, self.num_visual_features, 4, device=torch_device)
input_mask = None
if self.use_lang_mask:
input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
obj_labels = None
if self.task_obj_predict:
obj_labels = {}
if self.visual_attr_loss and self.task_obj_predict:
obj_labels["attr"] = (
ids_tensor([self.batch_size, self.num_visual_features], self.num_attr_labels),
ids_tensor([self.batch_size, self.num_visual_features], self.num_attr_labels),
)
if self.visual_feat_loss and self.task_obj_predict:
obj_labels["feat"] = (
ids_tensor(
[self.batch_size, self.num_visual_features, self.visual_feat_dim], self.num_visual_features
),
ids_tensor([self.batch_size, self.num_visual_features], self.num_visual_features),
)
if self.visual_obj_loss and self.task_obj_predict:
obj_labels["obj"] = (
ids_tensor([self.batch_size, self.num_visual_features], self.num_object_labels),
ids_tensor([self.batch_size, self.num_visual_features], self.num_object_labels),
)
ans = None
if self.task_qa:
ans = ids_tensor([self.batch_size], self.num_qa_labels)
masked_lm_labels = None
if self.task_mask_lm:
masked_lm_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
matched_label = None
if self.task_matched:
matched_label = ids_tensor([self.batch_size], self.num_labels)
config = LxmertConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_attention_heads=self.num_attention_heads,
num_labels=self.num_labels,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range,
layer_norm_eps=self.layer_norm_eps,
pad_token_id=self.pad_token_id,
num_qa_labels=self.num_qa_labels,
num_object_labels=self.num_object_labels,
num_attr_labels=self.num_attr_labels,
l_layers=self.l_layers,
x_layers=self.x_layers,
r_layers=self.r_layers,
visual_feat_dim=self.visual_feat_dim,
visual_pos_dim=self.visual_pos_dim,
visual_loss_normalizer=self.visual_loss_normalizer,
task_matched=self.task_matched,
task_mask_lm=self.task_mask_lm,
task_obj_predict=self.task_obj_predict,
task_qa=self.task_qa,
visual_obj_loss=self.visual_obj_loss,
visual_attr_loss=self.visual_attr_loss,
visual_feat_loss=self.visual_feat_loss,
output_attentions=self.output_attentions,
output_hidden_states=self.output_hidden_states,
)
return (
config,
input_ids,
visual_feats,
bounding_boxes,
token_type_ids,
input_mask,
obj_labels,
masked_lm_labels,
matched_label,
ans,
output_attentions,
)
def create_and_check_lxmert_model(
self,
config,
input_ids,
visual_feats,
bounding_boxes,
token_type_ids,
input_mask,
obj_labels,
masked_lm_labels,
matched_label,
ans,
output_attentions,
):
model = LxmertModel(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
visual_feats,
bounding_boxes,
token_type_ids=token_type_ids,
attention_mask=input_mask,
output_attentions=output_attentions,
)
result = model(
input_ids,
visual_feats,
bounding_boxes,
token_type_ids=token_type_ids,
attention_mask=input_mask,
output_attentions=not output_attentions,
)
result = model(input_ids, visual_feats, bounding_boxes, return_dict=False)
result = model(input_ids, visual_feats, bounding_boxes, return_dict=True)
self.parent.assertEqual(result.language_output.shape, (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(
result.vision_output.shape, (self.batch_size, self.num_visual_features, self.hidden_size)
)
self.parent.assertEqual(result.pooled_output.shape, (self.batch_size, self.hidden_size))
def create_and_check_lxmert_for_question_answering(
self,
config,
input_ids,
visual_feats,
bounding_boxes,
token_type_ids,
input_mask,
obj_labels,
masked_lm_labels,
matched_label,
ans,
output_attentions,
):
model = LxmertForQuestionAnswering(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
visual_feats,
bounding_boxes,
token_type_ids=token_type_ids,
attention_mask=input_mask,
labels=ans,
output_attentions=output_attentions,
)
result = model(input_ids, visual_feats, bounding_boxes, labels=ans)
result = model(
input_ids,
visual_feats,
bounding_boxes,
labels=ans,
token_type_ids=token_type_ids,
attention_mask=input_mask,
output_attentions=output_attentions,
)
result = model(
input_ids,
visual_feats,
bounding_boxes,
token_type_ids=token_type_ids,
attention_mask=input_mask,
labels=ans,
output_attentions=not output_attentions,
)
self.parent.assertEqual(result.question_answering_score.shape, (self.batch_size, self.num_qa_labels))
def create_and_check_lxmert_for_pretraining(
self,
config,
input_ids,
visual_feats,
bounding_boxes,
token_type_ids,
input_mask,
obj_labels,
masked_lm_labels,
matched_label,
ans,
output_attentions,
):
model = LxmertForPreTraining(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
visual_feats,
bounding_boxes,
token_type_ids=token_type_ids,
attention_mask=input_mask,
masked_lm_labels=masked_lm_labels,
obj_labels=obj_labels,
matched_label=matched_label,
ans=ans,
output_attentions=output_attentions,
)
result = model(
input_ids,
visual_feats,
bounding_boxes,
token_type_ids=token_type_ids,
attention_mask=input_mask,
masked_lm_labels=masked_lm_labels,
output_attentions=not output_attentions,
return_dict=False,
)
result = model(
input_ids,
visual_feats,
bounding_boxes,
token_type_ids=token_type_ids,
attention_mask=input_mask,
masked_lm_labels=masked_lm_labels,
)
result = model(
input_ids,
visual_feats,
bounding_boxes,
token_type_ids=token_type_ids,
attention_mask=input_mask,
obj_labels=obj_labels,
)
result = model(
input_ids,
visual_feats,
bounding_boxes,
token_type_ids=token_type_ids,
attention_mask=input_mask,
matched_label=matched_label,
)
result = model(
input_ids,
visual_feats,
bounding_boxes,
token_type_ids=token_type_ids,
attention_mask=input_mask,
ans=ans,
)
result = model(
input_ids,
visual_feats,
bounding_boxes,
token_type_ids=token_type_ids,
attention_mask=input_mask,
masked_lm_labels=masked_lm_labels,
obj_labels=obj_labels,
matched_label=matched_label,
ans=ans,
output_attentions=not output_attentions,
)
self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def resize_lxmert_num_qa_labels(
self,
config,
input_ids,
visual_feats,
bounding_boxes,
token_type_ids,
input_mask,
obj_labels,
masked_lm_labels,
matched_label,
ans,
output_attentions,
):
start_labels = config.num_qa_labels
num_large_labels = config.num_qa_labels * 2
num_small_labels = int(config.num_qa_labels * 2)
less_labels_ans = ids_tensor([self.batch_size], num_small_labels)
more_labels_ans = ids_tensor([self.batch_size], num_large_labels)
model_pretrain = LxmertForPreTraining(config=config).to(torch_device)
model_qa = LxmertForQuestionAnswering(config=config).to(torch_device)
config.num_labels = num_small_labels
end_labels = config.num_labels
result_pretrain = model_pretrain(
input_ids,
visual_feats,
bounding_boxes,
token_type_ids=token_type_ids,
attention_mask=input_mask,
ans=ans,
)
result_qa = model_qa(
input_ids,
visual_feats,
bounding_boxes,
labels=ans,
token_type_ids=token_type_ids,
attention_mask=input_mask,
)
model_pretrain.resize_num_qa_labels(num_small_labels)
model_qa.resize_num_qa_labels(num_small_labels)
result_pretrain_less = model_pretrain(
input_ids,
visual_feats,
bounding_boxes,
token_type_ids=token_type_ids,
attention_mask=input_mask,
ans=less_labels_ans,
)
result_qa_less = model_qa(
input_ids,
visual_feats,
bounding_boxes,
labels=less_labels_ans,
token_type_ids=token_type_ids,
attention_mask=input_mask,
)
model_pretrain.resize_num_qa_labels(num_large_labels)
model_qa.resize_num_qa_labels(num_large_labels)
result_pretrain_more = model_pretrain(
input_ids,
visual_feats,
bounding_boxes,
token_type_ids=token_type_ids,
attention_mask=input_mask,
ans=more_labels_ans,
)
result_qa_more = model_qa(
input_ids,
visual_feats,
bounding_boxes,
labels=more_labels_ans,
token_type_ids=token_type_ids,
attention_mask=input_mask,
)
model_qa_labels = model_qa.num_qa_labels
self.parent.assertNotEqual(start_labels, end_labels)
self.parent.assertNotEqual(model_qa_labels, start_labels)
self.parent.assertEqual(result_qa.question_answering_score.shape, (self.batch_size, start_labels))
self.parent.assertEqual(result_pretrain.question_answering_score.shape, (self.batch_size, start_labels))
self.parent.assertEqual(result_qa_less.question_answering_score.shape, (self.batch_size, num_small_labels))
self.parent.assertEqual(
result_pretrain_less.question_answering_score.shape, (self.batch_size, num_small_labels)
)
self.parent.assertEqual(result_qa_more.question_answering_score.shape, (self.batch_size, num_large_labels))
self.parent.assertEqual(
result_pretrain_more.question_answering_score.shape, (self.batch_size, num_large_labels)
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
visual_feats,
bounding_boxes,
token_type_ids,
input_mask,
obj_labels,
masked_lm_labels,
matched_label,
ans,
output_attentions,
) = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"visual_feats": visual_feats,
"visual_pos": bounding_boxes,
"token_type_ids": token_type_ids,
"attention_mask": input_mask,
}
return config, inputs_dict
@require_torch
class LxmertModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (LxmertModel, LxmertForPreTraining, LxmertForQuestionAnswering) if is_torch_available() else ()
test_head_masking = False
test_pruning = False
test_torchscript = False
# overwrite function because qa models takes different input label shape
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
inputs_dict = copy.deepcopy(inputs_dict)
if return_labels:
if model_class in get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING):
inputs_dict["labels"] = torch.zeros(
self.model_tester.batch_size, dtype=torch.long, device=torch_device
)
elif model_class in get_values(MODEL_FOR_PRETRAINING_MAPPING):
# special case for models like BERT that use multi-loss training for PreTraining
inputs_dict["labels"] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
)
return inputs_dict
def setUp(self):
self.model_tester = LxmertModelTester(self)
self.config_tester = ConfigTester(self, config_class=LxmertConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_lxmert_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lxmert_model(*config_and_inputs)
def test_lxmert_question_answering(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lxmert_for_question_answering(*config_and_inputs)
def test_lxmert_pretraining(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lxmert_for_pretraining(*config_and_inputs)
def test_lxmert_question_answering_labels_resize(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.resize_lxmert_num_qa_labels(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
for model_name in LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = LxmertModel.from_pretrained(model_name)
model.to(torch_device)
self.assertIsNotNone(model)
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
seq_len = getattr(self.model_tester, "seq_length", None)
encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
chunk_length = getattr(self.model_tester, "chunk_length", None)
if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes
for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
language_attentions, vision_attentions, cross_encoder_attentions = (outputs[-3], outputs[-2], outputs[-1])
self.assertEqual(len(language_attentions), self.model_tester.num_hidden_layers["language"])
self.assertEqual(len(vision_attentions), self.model_tester.num_hidden_layers["vision"])
self.assertEqual(len(cross_encoder_attentions), self.model_tester.num_hidden_layers["cross_encoder"])
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
config.output_attentions = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
language_attentions, vision_attentions, cross_encoder_attentions = (outputs[-3], outputs[-2], outputs[-1])
self.assertEqual(len(language_attentions), self.model_tester.num_hidden_layers["language"])
self.assertEqual(len(vision_attentions), self.model_tester.num_hidden_layers["vision"])
self.assertEqual(len(cross_encoder_attentions), self.model_tester.num_hidden_layers["cross_encoder"])
attentions = [language_attentions, vision_attentions, cross_encoder_attentions]
attention_shapes = [
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
[
self.model_tester.num_attention_heads,
self.model_tester.num_visual_features,
self.model_tester.num_visual_features,
],
[self.model_tester.num_attention_heads, encoder_key_length, self.model_tester.num_visual_features],
]
for attention, attention_shape in zip(attentions, attention_shapes):
self.assertListEqual(list(attention[0].shape[-3:]), attention_shape)
out_len = len(outputs)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
# 2 hidden states were added
self.assertEqual(out_len + 2, len(outputs))
language_attentions, vision_attentions, cross_encoder_attentions = (outputs[-3], outputs[-2], outputs[-1])
self.assertEqual(len(language_attentions), self.model_tester.num_hidden_layers["language"])
self.assertEqual(len(vision_attentions), self.model_tester.num_hidden_layers["vision"])
self.assertEqual(len(cross_encoder_attentions), self.model_tester.num_hidden_layers["cross_encoder"])
attentions = [language_attentions, vision_attentions, cross_encoder_attentions]
attention_shapes = [
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
[
self.model_tester.num_attention_heads,
self.model_tester.num_visual_features,
self.model_tester.num_visual_features,
],
[self.model_tester.num_attention_heads, encoder_key_length, self.model_tester.num_visual_features],
]
for attention, attention_shape in zip(attentions, attention_shapes):
self.assertListEqual(list(attention[0].shape[-3:]), attention_shape)
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
language_hidden_states, vision_hidden_states = outputs[-2], outputs[-1]
self.assertEqual(len(language_hidden_states), self.model_tester.num_hidden_layers["language"] + 1)
self.assertEqual(len(vision_hidden_states), self.model_tester.num_hidden_layers["vision"] + 1)
seq_length = self.model_tester.seq_length
num_visual_features = self.model_tester.num_visual_features
self.assertListEqual(
list(language_hidden_states[0].shape[-2:]),
[seq_length, self.model_tester.hidden_size],
)
self.assertListEqual(
list(vision_hidden_states[0].shape[-2:]),
[num_visual_features, self.model_tester.hidden_size],
)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
def test_retain_grad_hidden_states_attentions(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.output_hidden_states = True
config.output_attentions = True
# no need to test all models as different heads yield the same functionality
model_class = self.all_model_classes[0]
model = model_class(config)
model.to(torch_device)
inputs = self._prepare_for_class(inputs_dict, model_class)
outputs = model(**inputs)
hidden_states_lang = outputs.language_hidden_states[0]
attentions_lang = outputs.language_attentions[0]
hidden_states_vision = outputs.vision_hidden_states[0]
attentions_vision = outputs.vision_attentions[0]
hidden_states_lang.retain_grad()
attentions_lang.retain_grad()
hidden_states_vision.retain_grad()
attentions_vision.retain_grad()
outputs.language_output.flatten()[0].backward(retain_graph=True)
outputs.vision_output.flatten()[0].backward(retain_graph=True)
self.assertIsNotNone(hidden_states_lang.grad)
self.assertIsNotNone(attentions_vision.grad)
self.assertIsNotNone(hidden_states_vision.grad)
self.assertIsNotNone(attentions_vision.grad)
@require_torch
class LxmertModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_no_head_absolute_embedding(self):
model = LxmertModel.from_pretrained(LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST[0])
input_ids = torch.tensor([[101, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 102]])
num_visual_features = 10
_, visual_feats = np.random.seed(0), np.random.rand(1, num_visual_features, LxmertModel.config.visual_feat_dim)
_, visual_pos = np.random.seed(0), np.random.rand(1, num_visual_features, 4)
visual_feats = torch.as_tensor(visual_feats, dtype=torch.float32)
visual_pos = torch.as_tensor(visual_pos, dtype=torch.float32)
output = model(input_ids, visual_feats=visual_feats, visual_pos=visual_pos)[0]
expected_shape = torch.Size([1, 11, 768])
self.assertEqual(expected_shape, output.shape)
expected_slice = torch.tensor(
[[[0.2417, -0.9807, 0.1480], [1.2541, -0.8320, 0.5112], [1.4070, -1.1052, 0.6990]]]
)
self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))