Skip to content

A baseline segmentation example using the comma10k dataset (WIP)

License

Notifications You must be signed in to change notification settings

grekiki2/comma10k-baseline

Repository files navigation

🚗 comma10k-baseline

A semantic segmentation baseline using @comma.ai's comma10k dataset.

Using U-Net with efficientnet encoder, this baseline reaches 0.044 validation loss.

Visualize

Here is an example (randomly from the validation set, no cherry picking)

Ground truth

Ground truth

Predicted

Prediction

How to use

This baseline uses two stages (i) 437x582 (ii) 874x1164 (full resolution)

python3 train_lit_model.py --backbone efficientnet-b4 --version first-stage --gpus 2 --batch-size 28 --epochs 100 --height 437 --width 582
python3 train_lit_model.py --backbone efficientnet-b4 --version second-stage --gpus 2 --batch-size 7 --learning-rate 5e-5 --epochs 30 --height 874 --width 1164 --augmentation-level hard --seed-from-checkpoint .../efficientnet-b4/first-stage/checkpoints/last.ckpt

WIP and ideas of contributions!

  • Update to pytorch lightning 1.0
  • Try more image augmentations
  • Pretrain on a larger driving dataset
  • Try over sampling images with small or far objects

Dependecies

Python 3.5+, pytorch 1.6+ and dependencies listed in requirements.txt.

About

A baseline segmentation example using the comma10k dataset (WIP)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%