forked from zephyrproject-rtos/zephyr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mem_slab.c
323 lines (257 loc) · 8.42 KB
/
mem_slab.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
/*
* Copyright (c) 2016 Wind River Systems, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/kernel.h>
#include <zephyr/kernel_structs.h>
#include <zephyr/toolchain.h>
#include <zephyr/linker/sections.h>
#include <zephyr/sys/dlist.h>
#include <zephyr/init.h>
#include <zephyr/sys/check.h>
#include <zephyr/sys/iterable_sections.h>
#include <string.h>
/* private kernel APIs */
#include <ksched.h>
#include <wait_q.h>
#ifdef CONFIG_OBJ_CORE_MEM_SLAB
static struct k_obj_type obj_type_mem_slab;
#ifdef CONFIG_OBJ_CORE_STATS_MEM_SLAB
static int k_mem_slab_stats_raw(struct k_obj_core *obj_core, void *stats)
{
__ASSERT((obj_core != NULL) && (stats != NULL), "NULL parameter");
struct k_mem_slab *slab;
k_spinlock_key_t key;
slab = CONTAINER_OF(obj_core, struct k_mem_slab, obj_core);
key = k_spin_lock(&slab->lock);
memcpy(stats, &slab->info, sizeof(slab->info));
k_spin_unlock(&slab->lock, key);
return 0;
}
static int k_mem_slab_stats_query(struct k_obj_core *obj_core, void *stats)
{
__ASSERT((obj_core != NULL) && (stats != NULL), "NULL parameter");
struct k_mem_slab *slab;
k_spinlock_key_t key;
struct sys_memory_stats *ptr = stats;
slab = CONTAINER_OF(obj_core, struct k_mem_slab, obj_core);
key = k_spin_lock(&slab->lock);
ptr->free_bytes = (slab->info.num_blocks - slab->info.num_used) *
slab->info.block_size;
ptr->allocated_bytes = slab->info.num_used * slab->info.block_size;
#ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION
ptr->max_allocated_bytes = slab->info.max_used * slab->info.block_size;
#else
ptr->max_allocated_bytes = 0;
#endif /* CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION */
k_spin_unlock(&slab->lock, key);
return 0;
}
static int k_mem_slab_stats_reset(struct k_obj_core *obj_core)
{
__ASSERT(obj_core != NULL, "NULL parameter");
struct k_mem_slab *slab;
k_spinlock_key_t key;
slab = CONTAINER_OF(obj_core, struct k_mem_slab, obj_core);
key = k_spin_lock(&slab->lock);
#ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION
slab->info.max_used = slab->info.num_used;
#endif /* CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION */
k_spin_unlock(&slab->lock, key);
return 0;
}
static struct k_obj_core_stats_desc mem_slab_stats_desc = {
.raw_size = sizeof(struct k_mem_slab_info),
.query_size = sizeof(struct sys_memory_stats),
.raw = k_mem_slab_stats_raw,
.query = k_mem_slab_stats_query,
.reset = k_mem_slab_stats_reset,
.disable = NULL,
.enable = NULL,
};
#endif /* CONFIG_OBJ_CORE_STATS_MEM_SLAB */
#endif /* CONFIG_OBJ_CORE_MEM_SLAB */
/**
* @brief Initialize kernel memory slab subsystem.
*
* Perform any initialization of memory slabs that wasn't done at build time.
* Currently this just involves creating the list of free blocks for each slab.
*
* @retval 0 on success.
* @retval -EINVAL if @p slab contains invalid configuration and/or values.
*/
static int create_free_list(struct k_mem_slab *slab)
{
uint32_t j;
char *p;
/* blocks must be word aligned */
CHECKIF(((slab->info.block_size | (uintptr_t)slab->buffer) &
(sizeof(void *) - 1)) != 0U) {
return -EINVAL;
}
slab->free_list = NULL;
p = slab->buffer;
for (j = 0U; j < slab->info.num_blocks; j++) {
*(char **)p = slab->free_list;
slab->free_list = p;
p += slab->info.block_size;
}
return 0;
}
/**
* @brief Complete initialization of statically defined memory slabs.
*
* Perform any initialization that wasn't done at build time.
*
* @return 0 on success, fails otherwise.
*/
static int init_mem_slab_obj_core_list(void)
{
int rc = 0;
/* Initialize mem_slab object type */
#ifdef CONFIG_OBJ_CORE_MEM_SLAB
z_obj_type_init(&obj_type_mem_slab, K_OBJ_TYPE_MEM_SLAB_ID,
offsetof(struct k_mem_slab, obj_core));
#ifdef CONFIG_OBJ_CORE_STATS_MEM_SLAB
k_obj_type_stats_init(&obj_type_mem_slab, &mem_slab_stats_desc);
#endif /* CONFIG_OBJ_CORE_STATS_MEM_SLAB */
#endif /* CONFIG_OBJ_CORE_MEM_SLAB */
/* Initialize statically defined mem_slabs */
STRUCT_SECTION_FOREACH(k_mem_slab, slab) {
rc = create_free_list(slab);
if (rc < 0) {
goto out;
}
k_object_init(slab);
#ifdef CONFIG_OBJ_CORE_MEM_SLAB
k_obj_core_init_and_link(K_OBJ_CORE(slab), &obj_type_mem_slab);
#ifdef CONFIG_OBJ_CORE_STATS_MEM_SLAB
k_obj_core_stats_register(K_OBJ_CORE(slab), &slab->info,
sizeof(struct k_mem_slab_info));
#endif /* CONFIG_OBJ_CORE_STATS_MEM_SLAB */
#endif /* CONFIG_OBJ_CORE_MEM_SLAB */
}
out:
return rc;
}
SYS_INIT(init_mem_slab_obj_core_list, PRE_KERNEL_1,
CONFIG_KERNEL_INIT_PRIORITY_OBJECTS);
int k_mem_slab_init(struct k_mem_slab *slab, void *buffer,
size_t block_size, uint32_t num_blocks)
{
int rc;
slab->info.num_blocks = num_blocks;
slab->info.block_size = block_size;
slab->buffer = buffer;
slab->info.num_used = 0U;
slab->lock = (struct k_spinlock) {};
#ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION
slab->info.max_used = 0U;
#endif /* CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION */
rc = create_free_list(slab);
if (rc < 0) {
goto out;
}
#ifdef CONFIG_OBJ_CORE_MEM_SLAB
k_obj_core_init_and_link(K_OBJ_CORE(slab), &obj_type_mem_slab);
#endif /* CONFIG_OBJ_CORE_MEM_SLAB */
#ifdef CONFIG_OBJ_CORE_STATS_MEM_SLAB
k_obj_core_stats_register(K_OBJ_CORE(slab), &slab->info,
sizeof(struct k_mem_slab_info));
#endif /* CONFIG_OBJ_CORE_STATS_MEM_SLAB */
z_waitq_init(&slab->wait_q);
k_object_init(slab);
out:
SYS_PORT_TRACING_OBJ_INIT(k_mem_slab, slab, rc);
return rc;
}
int k_mem_slab_alloc(struct k_mem_slab *slab, void **mem, k_timeout_t timeout)
{
k_spinlock_key_t key = k_spin_lock(&slab->lock);
int result;
SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_mem_slab, alloc, slab, timeout);
if (slab->free_list != NULL) {
/* take a free block */
*mem = slab->free_list;
slab->free_list = *(char **)(slab->free_list);
slab->info.num_used++;
#ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION
slab->info.max_used = MAX(slab->info.num_used,
slab->info.max_used);
#endif /* CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION */
result = 0;
} else if (K_TIMEOUT_EQ(timeout, K_NO_WAIT) ||
!IS_ENABLED(CONFIG_MULTITHREADING)) {
/* don't wait for a free block to become available */
*mem = NULL;
result = -ENOMEM;
} else {
SYS_PORT_TRACING_OBJ_FUNC_BLOCKING(k_mem_slab, alloc, slab, timeout);
/* wait for a free block or timeout */
result = z_pend_curr(&slab->lock, key, &slab->wait_q, timeout);
if (result == 0) {
*mem = _current->base.swap_data;
}
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_mem_slab, alloc, slab, timeout, result);
return result;
}
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_mem_slab, alloc, slab, timeout, result);
k_spin_unlock(&slab->lock, key);
return result;
}
void k_mem_slab_free(struct k_mem_slab *slab, void *mem)
{
k_spinlock_key_t key = k_spin_lock(&slab->lock);
__ASSERT(((char *)mem >= slab->buffer) &&
((((char *)mem - slab->buffer) % slab->info.block_size) == 0) &&
((char *)mem <= (slab->buffer + (slab->info.block_size *
(slab->info.num_blocks - 1)))),
"Invalid memory pointer provided");
SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_mem_slab, free, slab);
if ((slab->free_list == NULL) && IS_ENABLED(CONFIG_MULTITHREADING)) {
struct k_thread *pending_thread = z_unpend_first_thread(&slab->wait_q);
if (pending_thread != NULL) {
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_mem_slab, free, slab);
z_thread_return_value_set_with_data(pending_thread, 0, mem);
z_ready_thread(pending_thread);
z_reschedule(&slab->lock, key);
return;
}
}
*(char **) mem = slab->free_list;
slab->free_list = (char *) mem;
slab->info.num_used--;
SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_mem_slab, free, slab);
k_spin_unlock(&slab->lock, key);
}
int k_mem_slab_runtime_stats_get(struct k_mem_slab *slab, struct sys_memory_stats *stats)
{
if ((slab == NULL) || (stats == NULL)) {
return -EINVAL;
}
k_spinlock_key_t key = k_spin_lock(&slab->lock);
stats->allocated_bytes = slab->info.num_used * slab->info.block_size;
stats->free_bytes = (slab->info.num_blocks - slab->info.num_used) *
slab->info.block_size;
#ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION
stats->max_allocated_bytes = slab->info.max_used *
slab->info.block_size;
#else
stats->max_allocated_bytes = 0;
#endif /* CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION */
k_spin_unlock(&slab->lock, key);
return 0;
}
#ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION
int k_mem_slab_runtime_stats_reset_max(struct k_mem_slab *slab)
{
if (slab == NULL) {
return -EINVAL;
}
k_spinlock_key_t key = k_spin_lock(&slab->lock);
slab->info.max_used = slab->info.num_used;
k_spin_unlock(&slab->lock, key);
return 0;
}
#endif /* CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION */