-
Notifications
You must be signed in to change notification settings - Fork 0
/
markov.xml
307 lines (281 loc) · 13.2 KB
/
markov.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
<!--
Copyright 2011 The Go Authors. All rights reserved.
Use of this source code is governed by a BSD-style
license that can be found in the LICENSE file.
-->
<codewalk title="Generating arbitrary text: a Markov chain algorithm">
<step title="Introduction" src="doc/codewalk/markov.go:/Generating/,/line\./">
This codewalk describes a program that generates random text using
a Markov chain algorithm. The package comment describes the algorithm
and the operation of the program. Please read it before continuing.
</step>
<step title="Modeling Markov chains" src="doc/codewalk/markov.go:/ chain/">
A chain consists of a prefix and a suffix. Each prefix is a set
number of words, while a suffix is a single word.
A prefix can have an arbitrary number of suffixes.
To model this data, we use a <code>map[string][]string</code>.
Each map key is a prefix (a <code>string</code>) and its values are
lists of suffixes (a slice of strings, <code>[]string</code>).
<br/><br/>
Here is the example table from the package comment
as modeled by this data structure:
<pre>
map[string][]string{
" ": {"I"},
" I": {"am"},
"I am": {"a", "not"},
"a free": {"man!"},
"am a": {"free"},
"am not": {"a"},
"a number!": {"I"},
"number! I": {"am"},
"not a": {"number!"},
}</pre>
While each prefix consists of multiple words, we
store prefixes in the map as a single <code>string</code>.
It would seem more natural to store the prefix as a
<code>[]string</code>, but we can't do this with a map because the
key type of a map must implement equality (and slices do not).
<br/><br/>
Therefore, in most of our code we will model prefixes as a
<code>[]string</code> and join the strings together with a space
to generate the map key:
<pre>
Prefix Map key
[]string{"", ""} " "
[]string{"", "I"} " I"
[]string{"I", "am"} "I am"
</pre>
</step>
<step title="The Chain struct" src="doc/codewalk/markov.go:/type Chain/,/}/">
The complete state of the chain table consists of the table itself and
the word length of the prefixes. The <code>Chain</code> struct stores
this data.
</step>
<step title="The NewChain constructor function" src="doc/codewalk/markov.go:/func New/,/\n}/">
The <code>Chain</code> struct has two unexported fields (those that
do not begin with an upper case character), and so we write a
<code>NewChain</code> constructor function that initializes the
<code>chain</code> map with <code>make</code> and sets the
<code>prefixLen</code> field.
<br/><br/>
This is constructor function is not strictly necessary as this entire
program is within a single package (<code>main</code>) and therefore
there is little practical difference between exported and unexported
fields. We could just as easily write out the contents of this function
when we want to construct a new Chain.
But using these unexported fields is good practice; it clearly denotes
that only methods of Chain and its constructor function should access
those fields. Also, structuring <code>Chain</code> like this means we
could easily move it into its own package at some later date.
</step>
<step title="The Prefix type" src="doc/codewalk/markov.go:/type Prefix/">
Since we'll be working with prefixes often, we define a
<code>Prefix</code> type with the concrete type <code>[]string</code>.
Defining a named type clearly allows us to be explicit when we are
working with a prefix instead of just a <code>[]string</code>.
Also, in Go we can define methods on any named type (not just structs),
so we can add methods that operate on <code>Prefix</code> if we need to.
</step>
<step title="The String method" src="doc/codewalk/markov.go:/func[^\n]+String/,/}/">
The first method we define on <code>Prefix</code> is
<code>String</code>. It returns a <code>string</code> representation
of a <code>Prefix</code> by joining the slice elements together with
spaces. We will use this method to generate keys when working with
the chain map.
</step>
<step title="Building the chain" src="doc/codewalk/markov.go:/func[^\n]+Build/,/\n}/">
The <code>Build</code> method reads text from an <code>io.Reader</code>
and parses it into prefixes and suffixes that are stored in the
<code>Chain</code>.
<br/><br/>
The <code><a href="/pkg/io/#Reader">io.Reader</a></code> is an
interface type that is widely used by the standard library and
other Go code. Our code uses the
<code><a href="/pkg/fmt/#Fscan">fmt.Fscan</a></code> function, which
reads space-separated values from an <code>io.Reader</code>.
<br/><br/>
The <code>Build</code> method returns once the <code>Reader</code>'s
<code>Read</code> method returns <code>io.EOF</code> (end of file)
or some other read error occurs.
</step>
<step title="Buffering the input" src="doc/codewalk/markov.go:/bufio\.NewReader/">
This function does many small reads, which can be inefficient for some
<code>Readers</code>. For efficiency we wrap the provided
<code>io.Reader</code> with
<code><a href="/pkg/bufio/">bufio.NewReader</a></code> to create a
new <code>io.Reader</code> that provides buffering.
</step>
<step title="The Prefix variable" src="doc/codewalk/markov.go:/make\(Prefix/">
At the top of the function we make a <code>Prefix</code> slice
<code>p</code> using the <code>Chain</code>'s <code>prefixLen</code>
field as its length.
We'll use this variable to hold the current prefix and mutate it with
each new word we encounter.
</step>
<step title="Scanning words" src="doc/codewalk/markov.go:/var s string/,/\n }/">
In our loop we read words from the <code>Reader</code> into a
<code>string</code> variable <code>s</code> using
<code>fmt.Fscan</code>. Since <code>Fscan</code> uses space to
separate each input value, each call will yield just one word
(including punctuation), which is exactly what we need.
<br/><br/>
<code>Fscan</code> returns an error if it encounters a read error
(<code>io.EOF</code>, for example) or if it can't scan the requested
value (in our case, a single string). In either case we just want to
stop scanning, so we <code>break</code> out of the loop.
</step>
<step title="Adding a prefix and suffix to the chain" src="doc/codewalk/markov.go:/ key/,/key\], s\)">
The word stored in <code>s</code> is a new suffix. We add the new
prefix/suffix combination to the <code>chain</code> map by computing
the map key with <code>p.String</code> and appending the suffix
to the slice stored under that key.
<br/><br/>
The built-in <code>append</code> function appends elements to a slice
and allocates new storage when necessary. When the provided slice is
<code>nil</code>, <code>append</code> allocates a new slice.
This behavior conveniently ties in with the semantics of our map:
retrieving an unset key returns the zero value of the value type and
the zero value of <code>[]string</code> is <code>nil</code>.
When our program encounters a new prefix (yielding a <code>nil</code>
value in the map) <code>append</code> will allocate a new slice.
<br/><br/>
For more information about the <code>append</code> function and slices
in general see the
<a href="/doc/articles/slices_usage_and_internals.html">Slices: usage and internals</a> article.
</step>
<step title="Pushing the suffix onto the prefix" src="doc/codewalk/markov.go:/p\.Shift/">
Before reading the next word our algorithm requires us to drop the
first word from the prefix and push the current suffix onto the prefix.
<br/><br/>
When in this state
<pre>
p == Prefix{"I", "am"}
s == "not" </pre>
the new value for <code>p</code> would be
<pre>
p == Prefix{"am", "not"}</pre>
This operation is also required during text generation so we put
the code to perform this mutation of the slice inside a method on
<code>Prefix</code> named <code>Shift</code>.
</step>
<step title="The Shift method" src="doc/codewalk/markov.go:/func[^\n]+Shift/,/\n}/">
The <code>Shift</code> method uses the built-in <code>copy</code>
function to copy the last len(p)-1 elements of <code>p</code> to
the start of the slice, effectively moving the elements
one index to the left (if you consider zero as the leftmost index).
<pre>
p := Prefix{"I", "am"}
copy(p, p[1:])
// p == Prefix{"am", "am"}</pre>
We then assign the provided <code>word</code> to the last index
of the slice:
<pre>
// suffix == "not"
p[len(p)-1] = suffix
// p == Prefix{"am", "not"}</pre>
</step>
<step title="Generating text" src="doc/codewalk/markov.go:/func[^\n]+Generate/,/\n}/">
The <code>Generate</code> method is similar to <code>Build</code>
except that instead of reading words from a <code>Reader</code>
and storing them in a map, it reads words from the map and
appends them to a slice (<code>words</code>).
<br/><br/>
<code>Generate</code> uses a conditional for loop to generate
up to <code>n</code> words.
</step>
<step title="Getting potential suffixes" src="doc/codewalk/markov.go:/choices/,/}\n/">
At each iteration of the loop we retrieve a list of potential suffixes
for the current prefix. We access the <code>chain</code> map at key
<code>p.String()</code> and assign its contents to <code>choices</code>.
<br/><br/>
If <code>len(choices)</code> is zero we break out of the loop as there
are no potential suffixes for that prefix.
This test also works if the key isn't present in the map at all:
in that case, <code>choices</code> will be <code>nil</code> and the
length of a <code>nil</code> slice is zero.
</step>
<step title="Choosing a suffix at random" src="doc/codewalk/markov.go:/next := choices/,/Shift/">
To choose a suffix we use the
<code><a href="/pkg/math/rand/#Intn">rand.Intn</a></code> function.
It returns a random integer up to (but not including) the provided
value. Passing in <code>len(choices)</code> gives us a random index
into the full length of the list.
<br/><br/>
We use that index to pick our new suffix, assign it to
<code>next</code> and append it to the <code>words</code> slice.
<br/><br/>
Next, we <code>Shift</code> the new suffix onto the prefix just as
we did in the <code>Build</code> method.
</step>
<step title="Returning the generated text" src="doc/codewalk/markov.go:/Join\(words/">
Before returning the generated text as a string, we use the
<code>strings.Join</code> function to join the elements of
the <code>words</code> slice together, separated by spaces.
</step>
<step title="Command-line flags" src="doc/codewalk/markov.go:/Register command-line flags/,/prefixLen/">
To make it easy to tweak the prefix and generated text lengths we
use the <code><a href="/pkg/flag/">flag</a></code> package to parse
command-line flags.
<br/><br/>
These calls to <code>flag.Int</code> register new flags with the
<code>flag</code> package. The arguments to <code>Int</code> are the
flag name, its default value, and a description. The <code>Int</code>
function returns a pointer to an integer that will contain the
user-supplied value (or the default value if the flag was omitted on
the command-line).
</step>
<step title="Program set up" src="doc/codewalk/markov.go:/flag.Parse/,/rand.Seed/">
The <code>main</code> function begins by parsing the command-line
flags with <code>flag.Parse</code> and seeding the <code>rand</code>
package's random number generator with the current time.
<br/><br/>
If the command-line flags provided by the user are invalid the
<code>flag.Parse</code> function will print an informative usage
message and terminate the program.
</step>
<step title="Creating and building a new Chain" src="doc/codewalk/markov.go:/c := NewChain/,/c\.Build/">
To create the new <code>Chain</code> we call <code>NewChain</code>
with the value of the <code>prefix</code> flag.
<br/><br/>
To build the chain we call <code>Build</code> with
<code>os.Stdin</code> (which implements <code>io.Reader</code>) so
that it will read its input from standard input.
</step>
<step title="Generating and printing text" src="doc/codewalk/markov.go:/c\.Generate/,/fmt.Println/">
Finally, to generate text we call <code>Generate</code> with
the value of the <code>words</code> flag and assigning the result
to the variable <code>text</code>.
<br/><br/>
Then we call <code>fmt.Println</code> to write the text to standard
output, followed by a carriage return.
</step>
<step title="Using this program" src="doc/codewalk/markov.go">
To use this program, first build it with the
<a href="/cmd/go/">go</a> command:
<pre>
$ go build markov.go</pre>
And then execute it while piping in some input text:
<pre>
$ echo "a man a plan a canal panama" \
| ./markov -prefix=1
a plan a man a plan a canal panama</pre>
Here's a transcript of generating some text using the Go distribution's
README file as source material:
<pre>
$ ./markov -words=10 < $GOROOT/README
This is the source code repository for the Go source
$ ./markov -prefix=1 -words=10 < $GOROOT/README
This is the go directory (the one containing this README).
$ ./markov -prefix=1 -words=10 < $GOROOT/README
This is the variable if you have just untarred a</pre>
</step>
<step title="An exercise for the reader" src="doc/codewalk/markov.go">
The <code>Generate</code> function does a lot of allocations when it
builds the <code>words</code> slice. As an exercise, modify it to
take an <code>io.Writer</code> to which it incrementally writes the
generated text with <code>Fprint</code>.
Aside from being more efficient this makes <code>Generate</code>
more symmetrical to <code>Build</code>.
</step>
</codewalk>