forked from etcd-io/dbtester
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path03_read_benchmark_metrics_to_analyze_data.go
277 lines (252 loc) · 7.38 KB
/
03_read_benchmark_metrics_to_analyze_data.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
// Copyright 2017 CoreOS, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package analyze
import (
"fmt"
"github.com/gyuho/dataframe"
)
// importBenchMetrics adds benchmark metrics from client-side
// and aggregates this to system metrics by unix timestamps.
func (data *analyzeData) importBenchMetrics(fpath string) (err error) {
data.benchMetricsFilePath = fpath
var tdf dataframe.Frame
tdf, err = dataframe.NewFromCSV(nil, fpath)
if err != nil {
return
}
var oldTSCol dataframe.Column
oldTSCol, err = tdf.Column("UNIX-SECOND")
if err != nil {
return err
}
// get first(minimum) unix second
fv1, ok := oldTSCol.FrontNonNil()
if !ok {
return fmt.Errorf("FrontNonNil %s has empty Unix time %v", fpath, fv1)
}
ivv1, ok := fv1.Int64()
if !ok {
return fmt.Errorf("cannot Int64 %v", fv1)
}
data.benchMetrics.frontUnixSecond = int64(ivv1)
// get last(maximum) unix second
fv2, ok := oldTSCol.BackNonNil()
if !ok {
return fmt.Errorf("BackNonNil %s has empty Unix time %v", fpath, fv2)
}
ivv2, ok := fv2.Int64()
if !ok {
return fmt.Errorf("cannot Int64 %v", fv2)
}
data.benchMetrics.lastUnixSecond = int64(ivv2)
// UNIX-SECOND, CONTROL-CLIENT-NUM, MIN-LATENCY-MS, AVG-LATENCY-MS, MAX-LATENCY-MS, AVG-THROUGHPUT
var oldControlClientNumCol dataframe.Column
oldControlClientNumCol, err = tdf.Column("CONTROL-CLIENT-NUM")
if err != nil {
return err
}
var oldMinLatencyMSCol dataframe.Column
oldMinLatencyMSCol, err = tdf.Column("MIN-LATENCY-MS")
if err != nil {
return err
}
var oldAvgLatencyMSCol dataframe.Column
oldAvgLatencyMSCol, err = tdf.Column("AVG-LATENCY-MS")
if err != nil {
return err
}
var oldMaxLatencyMSCol dataframe.Column
oldMaxLatencyMSCol, err = tdf.Column("MAX-LATENCY-MS")
if err != nil {
return err
}
var oldAvgThroughputCol dataframe.Column
oldAvgThroughputCol, err = tdf.Column("AVG-THROUGHPUT")
if err != nil {
return err
}
sec2Data := make(map[int64]rowData)
for i := 0; i < oldTSCol.Count(); i++ {
tv, err := oldTSCol.Value(i)
if err != nil {
return err
}
ts, ok := tv.Int64()
if !ok {
return fmt.Errorf("cannot Int64 %v", tv)
}
cv, err := oldControlClientNumCol.Value(i)
if err != nil {
return err
}
clientN, ok := cv.Int64()
if !ok {
return fmt.Errorf("cannot Int64 %v", cv)
}
cn := int64(clientN)
lv1, err1 := oldMinLatencyMSCol.Value(i)
if err1 != nil {
return err1
}
minLat, ok1 := lv1.Float64()
if !ok1 {
return fmt.Errorf("cannot Float64 %v", lv1)
}
lv2, err2 := oldAvgLatencyMSCol.Value(i)
if err2 != nil {
return err2
}
avgLat, ok2 := lv2.Float64()
if !ok2 {
return fmt.Errorf("cannot Float64 %v", lv2)
}
lv3, err3 := oldMaxLatencyMSCol.Value(i)
if err3 != nil {
return err3
}
maxLat, ok3 := lv3.Float64()
if !ok3 {
return fmt.Errorf("cannot Float64 %v", lv3)
}
hv, err := oldAvgThroughputCol.Value(i)
if err != nil {
return err
}
dataThr, ok := hv.Float64()
if !ok {
return fmt.Errorf("cannot Float64 %v", hv)
}
// handle duplicate timestamps
if v, ok := sec2Data[ts]; !ok {
sec2Data[ts] = rowData{clientN: cn, minLat: minLat, avgLat: avgLat, maxLat: maxLat, throughput: dataThr}
} else {
// it is possible that there are duplicate timestamps with
// different client numbers, when clients number bump up
// these requests happen within this unix second, add up the
// throughput, and select min,max and avg of latencies
sec2Data[ts] = rowData{
clientN: cn,
minLat: minFloat64(v.minLat, minLat),
avgLat: (v.avgLat + avgLat) / 2.0,
maxLat: maxFloat64(v.maxLat, maxLat),
throughput: v.throughput + dataThr,
}
}
}
// UNIX-SECOND, CONTROL-CLIENT-NUM, MIN-LATENCY-MS, AVG-LATENCY-MS, MAX-LATENCY-MS, AVG-THROUGHPUT
// aggregate duplicate benchmark timestamps with average values
// OR fill in missing timestamps with zero values
//
// expected row number
expectedRowN := data.benchMetrics.lastUnixSecond - data.benchMetrics.frontUnixSecond + 1
newSecondCol := dataframe.NewColumn("UNIX-SECOND")
newControlClientNumCol := dataframe.NewColumn("CONTROL-CLIENT-NUM")
newMinLatencyCol := dataframe.NewColumn("MIN-LATENCY-MS")
newAvgLatencyCol := dataframe.NewColumn("AVG-LATENCY-MS")
newMaxLatencyCol := dataframe.NewColumn("MAX-LATENCY-MS")
newAvgThroughputCol := dataframe.NewColumn("AVG-THROUGHPUT")
for i := int64(0); i < expectedRowN; i++ {
second := data.benchMetrics.frontUnixSecond + i
newSecondCol.PushBack(dataframe.NewStringValue(second))
v, ok := sec2Data[second]
if !ok {
// fill-in missing rows with closest row
closest := findClosest(second, sec2Data)
newControlClientNumCol.PushBack(dataframe.NewStringValue(closest.clientN))
newMinLatencyCol.PushBack(dataframe.NewStringValue(0.0))
newAvgLatencyCol.PushBack(dataframe.NewStringValue(0.0))
newMaxLatencyCol.PushBack(dataframe.NewStringValue(0.0))
newAvgThroughputCol.PushBack(dataframe.NewStringValue(0))
continue
}
newControlClientNumCol.PushBack(dataframe.NewStringValue(v.clientN))
newMinLatencyCol.PushBack(dataframe.NewStringValue(v.minLat))
newAvgLatencyCol.PushBack(dataframe.NewStringValue(v.avgLat))
newMaxLatencyCol.PushBack(dataframe.NewStringValue(v.maxLat))
newAvgThroughputCol.PushBack(dataframe.NewStringValue(v.throughput))
}
df := dataframe.New()
if err = df.AddColumn(newSecondCol); err != nil {
return err
}
if err = df.AddColumn(newControlClientNumCol); err != nil {
return err
}
if err = df.AddColumn(newMinLatencyCol); err != nil {
return err
}
if err = df.AddColumn(newAvgLatencyCol); err != nil {
return err
}
if err = df.AddColumn(newMaxLatencyCol); err != nil {
return err
}
if err = df.AddColumn(newAvgThroughputCol); err != nil {
return err
}
data.benchMetrics.frame = df
return
}
type rowData struct {
clientN int64
minLat float64
avgLat float64
maxLat float64
throughput float64
}
func findClosest(second int64, sec2Data map[int64]rowData) rowData {
v, ok := sec2Data[second]
if ok {
return v
}
var min int64
var max int64
for k := range sec2Data {
if min == 0 || min > k {
min = k
}
if max == 0 || max < k {
max = k
}
}
r, ok := _findClosestLower(second, sec2Data, min, max)
if ok {
return r
}
r, ok = _findClosestUpper(second, sec2Data, min, max)
if !ok {
panic(fmt.Errorf("something wrong with benchmark data... too many data points are missing"))
}
return r
}
func _findClosestUpper(second int64, sec2Data map[int64]rowData, min, max int64) (rowData, bool) {
if second < min || second > max {
return rowData{}, false
}
v, ok := sec2Data[second]
if ok {
return v, true
}
return _findClosestUpper(second+1, sec2Data, min, max)
}
func _findClosestLower(second int64, sec2Data map[int64]rowData, min, max int64) (rowData, bool) {
if second < min || second > max {
return rowData{}, false
}
v, ok := sec2Data[second]
if ok {
return v, true
}
return _findClosestLower(second-1, sec2Data, min, max)
}