forked from namisan/mt-dnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
prepro_std.py
executable file
·296 lines (267 loc) · 9.2 KB
/
prepro_std.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
# coding=utf-8
# Copyright (c) Microsoft. All rights reserved.
import yaml
import os
import numpy as np
import argparse
import json
import sys
from data_utils import load_data
from data_utils.task_def import TaskType, DataFormat
from data_utils.log_wrapper import create_logger
from experiments.exp_def import TaskDefs
from data_utils.tokenizer_utils import create_tokenizer
from tqdm import tqdm
from functools import partial
import multiprocessing
DEBUG_MODE = False
MAX_SEQ_LEN = 512
DOC_STRIDE = 180
MAX_QUERY_LEN = 64
MRC_MAX_SEQ_LEN = 384
logger = create_logger(
__name__, to_disk=True, log_file="mt_dnn_data_proc_{}.log".format(MAX_SEQ_LEN)
)
def feature_extractor(tokenizer, text_a, text_b=None, max_length=512, do_padding=False):
inputs = tokenizer(
text_a,
text_pair=text_b,
add_special_tokens=True,
max_length=max_length,
truncation=True,
padding=do_padding,
)
input_ids = inputs["input_ids"]
token_type_ids = (
inputs["token_type_ids"] if "token_type_ids" in inputs else [0] * len(input_ids)
)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
attention_mask = inputs["attention_mask"]
if do_padding:
assert len(input_ids) == max_length, "Error with input length {} vs {}".format(
len(input_ids), max_length
)
assert (
len(attention_mask) == max_length
), "Error with input length {} vs {}".format(len(attention_mask), max_length)
assert (
len(token_type_ids) == max_length
), "Error with input length {} vs {}".format(len(token_type_ids), max_length)
return input_ids, attention_mask, token_type_ids
def extract_feature_premise_only(sample, max_seq_len=MAX_SEQ_LEN, tokenizer=None):
"""extract feature of single sentence tasks"""
input_ids, input_mask, type_ids = feature_extractor(
tokenizer, sample["premise"], max_length=max_seq_len
)
feature = {
"uid": sample["uid"],
"label": sample["label"],
"token_id": input_ids,
"type_id": type_ids,
"attention_mask": input_mask,
}
return feature
def extract_feature_premise_and_one_hypo(
sample, max_seq_len=MAX_SEQ_LEN, tokenizer=None
):
input_ids, input_mask, type_ids = feature_extractor(
tokenizer,
sample["premise"],
text_b=sample["hypothesis"],
max_length=max_seq_len,
)
feature = {
"uid": sample["uid"],
"label": sample["label"],
"token_id": input_ids,
"type_id": type_ids,
"attention_mask": input_mask,
}
return feature
def extract_feature_premise_and_multi_hypo(
sample, max_seq_len=MAX_SEQ_LEN, tokenizer=None
):
ids = sample["uid"]
premise = sample["premise"]
hypothesis_list = sample["hypothesis"]
label = sample["label"]
input_ids_list = []
type_ids_list = []
attention_mask_list = []
for hypothesis in hypothesis_list:
input_ids, input_mask, type_ids = feature_extractor(
tokenizer, premise, hypothesis, max_length=max_seq_len
)
input_ids_list.append(input_ids)
type_ids_list.append(type_ids)
attention_mask_list.append(input_mask)
feature = {
"uid": ids,
"label": label,
"token_id": input_ids_list,
"type_id": type_ids_list,
"ruid": sample["ruid"],
"olabel": sample["olabel"],
"attention_mask": attention_mask_list,
}
return feature
def extract_feature_sequence(
sample, max_seq_len=MAX_SEQ_LEN, tokenizer=None, label_mapper=None
):
ids = sample["uid"]
premise = sample["premise"]
tokens = []
labels = []
for i, word in enumerate(premise):
subwords = tokenizer.tokenize(word)
tokens.extend(subwords)
for j in range(len(subwords)):
if j == 0:
labels.append(sample["label"][i])
else:
labels.append(label_mapper["X"])
if len(premise) > max_seq_len - 2:
tokens = tokens[: max_seq_len - 2]
labels = labels[: max_seq_len - 2]
label = [label_mapper["CLS"]] + labels + [label_mapper["SEP"]]
input_ids = tokenizer.convert_tokens_to_ids(
[tokenizer.cls_token] + tokens + [tokenizer.sep_token]
)
assert len(label) == len(input_ids)
type_ids = [0] * len(input_ids)
feature = {"uid": ids, "label": label, "token_id": input_ids, "type_id": type_ids}
return feature
def extract_feature_cloze_choice(
sample, max_seq_len=MAX_SEQ_LEN, tokenizer=None
):
ids = sample["uid"]
premise = sample["premise"]
hypothesis_list = sample["hypothesis"]
label = sample["label"]
input_ids_list = []
type_ids_list = []
attention_mask_list = []
for hypothesis in hypothesis_list:
input_ids, input_mask, type_ids = feature_extractor(
tokenizer, premise, hypothesis, max_length=max_seq_len
)
input_ids_list.append(input_ids)
type_ids_list.append(type_ids)
attention_mask_list.append(input_mask)
feature = {
"uid": ids,
"label": label,
"token_id": input_ids_list,
"type_id": type_ids_list,
"olabel": sample["olabel"],
"attention_mask": attention_mask_list,
"choice": sample["choice"],
"answer": sample["answer"]
}
return feature
def build_data(
data,
dump_path,
tokenizer,
data_format=DataFormat.PremiseOnly,
max_seq_len=MAX_SEQ_LEN,
lab_dict=None,
do_padding=False,
truncation=True,
workers=1,
):
if data_format == DataFormat.PremiseOnly:
partial_feature = partial(
extract_feature_premise_only, max_seq_len=max_seq_len, tokenizer=tokenizer
)
elif data_format == DataFormat.PremiseAndOneHypothesis:
partial_feature = partial(
extract_feature_premise_and_one_hypo,
max_seq_len=max_seq_len,
tokenizer=tokenizer,
)
elif data_format == DataFormat.PremiseAndMultiHypothesis:
partial_feature = partial(
extract_feature_premise_and_multi_hypo,
max_seq_len=max_seq_len,
tokenizer=tokenizer,
)
elif data_format == DataFormat.Seqence:
partial_feature = partial(
extract_feature_sequence,
max_seq_len=max_seq_len,
tokenizer=tokenizer,
label_mapper=lab_dict,
)
elif data_format == DataFormat.ClozeChoice:
partial_feature = partial(
extract_feature_cloze_choice,
max_seq_len=max_seq_len,
tokenizer=tokenizer,
)
else:
raise ValueError(data_format)
if workers > 1:
with multiprocessing.Pool(processes=workers) as pool:
features = pool.map(partial_feature, data)
logger.info("begin to write features")
with open(dump_path, "w", encoding="utf-8") as writer:
for feature in tqdm(features, total=len(features)):
writer.write("{}\n".format(json.dumps(feature)))
else:
with open(dump_path, "w", encoding="utf-8") as writer:
for sample in tqdm(data, total=len(data)):
feature = partial_feature(sample)
writer.write("{}\n".format(json.dumps(feature)))
def parse_args():
parser = argparse.ArgumentParser(
description="Preprocessing GLUE/SNLI/SciTail dataset."
)
parser.add_argument(
"--model",
type=str,
default="bert-base-uncased",
help="support all BERT and ROBERTA family supported by HuggingFace Transformers",
)
parser.add_argument("--do_padding", action="store_true")
parser.add_argument("--root_dir", type=str, default="data/canonical_data")
parser.add_argument(
"--task_def", type=str, default="experiments/glue/glue_task_def.yml"
)
parser.add_argument("--do_lower", action="store_true")
parser.add_argument("--transformer_cache", default=".cache", type=str)
parser.add_argument("--workers", type=int, default=1)
args = parser.parse_args()
return args
def main(args):
# hyper param
root = args.root_dir
assert os.path.exists(root)
tokenizer = create_tokenizer(args.model, args.transformer_cache, do_lower_case=args.do_lower)
mt_dnn_root = os.path.join(root, args.model)
if not os.path.isdir(mt_dnn_root):
os.makedirs(mt_dnn_root)
task_defs = TaskDefs(args.task_def)
for task in task_defs.get_task_names():
task_def = task_defs.get_task_def(task)
logger.info("Task %s" % task)
for split_name in task_def.split_names:
file_path = os.path.join(root, "%s_%s.tsv" % (task, split_name))
if not os.path.exists(file_path):
logger.warning("File %s doesnot exit")
sys.exit(1)
rows = load_data(file_path, task_def)
dump_path = os.path.join(mt_dnn_root, "%s_%s.json" % (task, split_name))
logger.info(dump_path)
build_data(
rows,
dump_path,
tokenizer,
task_def.data_type,
lab_dict=task_def.label_vocab,
workers=args.workers,
)
if __name__ == "__main__":
args = parse_args()
main(args)