forked from datasciencedojo/datasets
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathslideSourceFile.Rmd
544 lines (420 loc) · 16.2 KB
/
slideSourceFile.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
---
title: "Data Exploration, Visualization, and Feature Engineering using R"
author: "Yuhui Zhang, and Raja Iqbal"
mode: standalone
output: pdf_document
framework: flowtime
url:
lib: /home/yuhui/Copy/YDSDojo/bootcamp/slidify/slidifyExamples/libraries
---
<!-- no space between code and its results -->
```{r, echo=FALSE}
library(knitr)
hook1 <- function(x){ gsub("```\n*```r*\n*", "", x) }
hook2 <- function(x){ gsub("```\n+```\n", "", x) }
## knit_hooks$set(document = hook2)
```
# Basic plotting systems
1. Base graphics: constructed piecemeal. Conceptually simpler and allows plotting to mirror the thought process.
2. Lattice graphics: entire plots created in a simple function call.
3. ggplot2 graphics: an implementation of the Grammar of Graphics by Leland Wikinson. Combines concepts from both base and lattice graphics. (Need to install ggplot2 library)
4. Fancier and more telling ones.
A list of interactive visualization in R can be found at: http://ouzor.github.io/blog/2014/11/21/interactive-visualizations.html
---
## Base plotting system
```{r, fig.width=6, fig.height=5}
library(datasets)
## scatter plot
plot(x = airquality$Temp, y = airquality$Ozone)
```
***
## Base plotting system
```{r, fig.width=15, fig.height=4.5}
## par() function is used to specify global graphics parameters that affect all plots in an R session.
## Type ?par to see all parameters
par(mfrow = c(1, 2), mar = c(4, 4, 2, 1), oma = c(0, 0, 2, 0))
with(airquality, {
plot(Wind, Ozone, main="Ozone and Wind")
plot(Temp, Ozone, main="Ozone and Temperature")
mtext("Ozone and Weather in New York City", outer=TRUE)})
```
***
## Plotting functions (high level)
<img src="drawDraft.jpg", style="float:right;width:300px;height:190px"">
**PHASE ONE: Mount a canvas panel on the easel, and draw the draft.** (Initialize a plot.)
* plot(): one of the most frequently used plotting functions in R.
* boxplot(): a boxplot show the distribution of a vector. It is very useful to example the distribution of different variables.
* barplot(): create a bar plot with vertical or horizontal bars.
* hist(): compute a histogram of the given data values.
* pie(): draw a pie chart.
Remember to use ?plot or str(plot), etc. to check the arguments when you want to make more personalized plots. A tutorial of base plotting system with more details: http://bcb.dfci.harvard.edu/~aedin/courses/BiocDec2011/2.Plotting.pdf
***
## Plotting functions (low level)
<img src="drawDetails.png", style="float:right;width:300px;height:220px"">
**PHASE TWO: Add more details on your canvas, and make an artwork.** (Add more on an existing plot.)
* lines: adds liens to a plot, given a vector of x values and corresponding vector of y values
* points: adds a point to the plot
* text: add text labels to a plot using specified x,y coordinates
* title: add annotations to x,y axis labels, title, subtitles, outer margin
* mtext: add arbitrary text to margins (inner or outer) of plot
* axis: specify axis ticks
***
## Save your artwork
<img src="saveArtwork.jpg", style="float:right;width:300px;height:220px"">
R can generate graphics (of varying levels of quality) on almost any type of display or printing device. Like:
* postscript(): for printing on PostScript printers, or creating PostScript graphics files.
* pdf(): produces a PDF file, which can also be included into PDF files.
* jpeg(): produces a bitmap JPEG file, best used for image plots.
help(Devices) for a list of them all. Simple example:
```{r}
## png(filename = 'plot1.png', width = 480, height = 480, units = 'px')
## plot(x, y)
## dev.off()
```
***
## Example: boxplot and hitogram
<img src="quantile.gif", style="width:350px;height:175px;float:right">
```{r, fig.width=8, fig.height=4.5}
## the layout
par(mfrow = c(2, 1), mar = c(2, 0, 2, 0), oma = c(0, 0, 0, 0))
## histogram at the top
hist(airquality$Ozone, breaks=12, main = "Histogram of Ozone")
## box plot below for comparison
boxplot(airquality$Ozone, horizontal=TRUE, main = "Box plot of Ozone")
```
---
## Lattice plotting system
```{r, fig.width=15, fig.height=4.5}
library(lattice) # need to load the lattice library
set.seed(10) # set the seed so our plots are the same
x <- rnorm(100)
f <- rep(1:4, each = 25) # first 25 elements are 1, second 25 elements are 2, ...
y <- x + f - f * x+ rnorm(100, sd = 0.5)
f <- factor(f, labels = c("Group 1", "Group 2", "Group 3", "Group 4"))
# first 25 elements are in Group 1, second 25 elements are in Group 2, ...
xyplot(y ~ x | f)
```
***
## Lattice plotting system
Want more on the plot? Customize the panel funciton:
```{r, fig.keep = 'none'}
xyplot(y ~ x | f, panel = function(x, y, ...) {
# call the default panel function for xyplot
panel.xyplot(x, y, ...)
# adds a horizontal line at the median
panel.abline(h = median(y), lty = 2)
# overlays a simple linear regression line
panel.lmline(x, y, col = 2)
})
```
***
## Lattice plotting system
```{r, echo=FALSE}
xyplot(y ~ x | f, panel = function(x, y, ...) {
# call the default panel function for xyplot
panel.xyplot(x, y, ...)
# adds a horizontal line at the median
panel.abline(h = median(y), lty = 2)
# overlays a simple linear regression line
panel.lmline(x, y, col = 2)
})
```
***
## Lattice plotting system
Plotting functions
* xyplot(): main function for creating scatterplots
* bwplot(): box and whiskers plots (box plots)
* histogram(): histograms
* stripplot(): box plot with actual points
* dotplot(): plot dots on "violin strings"
* splom(): scatterplot matrix (like pairs() in base plotting system)
* levelplot()/contourplot(): plotting image data
***
## Very useful when we want a lot...
```{r}
pairs(iris) ## iris is a data set in R
```
---
## ggplot2
* An implementation of the Grammar of Graphics by Leland Wikinson
* Written by Hadley Wickham (while he was a graduate student as lowa State)
* A "third" graphics system for R (along with base and lattice)
Available from CRAN via install.packages()
web site: http://ggplot2.org (better documentation)
* Grammar of graphics represents the abstraction of graphics ideas/objects
Think "verb", "noun", "adjective" for graphics
"Shorten" the distance from mind to page
* Two main functions:
**qplot()** hides what goes on underneath, which is okay for most operations
**ggplot()** is the core function and very flexible for doing this qplot() cannot do
***
## qplot function
The qplot() function is the analog to plot() but with many build-in features
Syntax somewhere in between base/lattice
Difficult to be customized (don't bother, use full ggplot2 power in that case)
```{r, fig.width=8, fig.height=3}
library(ggplot2) ## need to install and load this library
qplot(displ, hwy, data = mpg, facets = .~drv)
```
***
## ggplot function
When building plots in ggplot2 (ggplot, rather than using qplot)
The "artist's palette" model may be the closest analogy
Plots are built up in layers
* Step I: Input the data
**noun**: the data
```{r}
library(ggplot2) ## need to install and load this library
g <- ggplot(iris, aes(Sepal.Length, Sepal.Width)) ## this would not show you add plot
```
***
## ggplot function
* Step II: Add layers
**adjective**: describe the type of plot you will produce.
```{r, fig.width=12, fig.height=4.5}
g + geom_point() + geom_smooth(method = "lm") + facet_grid(. ~ Species)
```
***
## ggplot function
* Step III: Add metadata and annotation
**adjective**: control the mapping between data and aesthetics.
```{r, fig.width=12, fig.height=4.5}
g <- g + geom_point() + geom_smooth(method = "lm") + facet_grid(. ~ Species)
g + ggtitle("Sepal length vs. width for different species") + theme_bw() ## verb
```
***
## Great documentation
Great **documentation** of ggplot with all functions in **step II** and **III** and demos:
http://docs.ggplot2.org/current/
---
# Titanic tragedy data
<img src="Titanic.jpg", style="width:791px;height:509px"">
---
## Reading RAW training data
* Download the data set "Titanic_train.csv" from
https://raw.githubusercontent.com/datasciencedojo/datasets/master/Titanic_train.csv
* Set working directory of R to the directory of the file using setwd()
```{r}
titanic = read.csv('Titanic_train.csv')
```
***
## Look at the first few rows
What would be some good features to consider here?
```{r}
options(width = 110)
head(titanic)
```
***
## What is the data type of each column?
```{r}
sapply(titanic,class)
```
***
## Converting class label to a factor
```{r}
titanic$Survived = factor(titanic$Survived, labels=c("died", "survived"))
titanic$Embarked = factor(titanic$Embarked, labels=c("unkown", "Cherbourg", "Queenstown", "Southampton"))
sapply(titanic,class)
str(titanic$Survived)
str(titanic$Sex)
```
---
## Class distribution - PIE Charts
```{r, fig.width=3, fig.height=3}
survivedTable = table(titanic$Survived)
survivedTable
par(mar = c(0, 0, 0, 0), oma = c(0, 0, 0, 0))
pie(survivedTable,labels=c("Died","Survived"))
```
***
## Is Sex a good predictor?
<!-- plotting area: http://research.stowers-institute.org/mcm/efg/R/Graphics/Basics/mar-oma/index.htm -->
```{r, fig.width=14, fig.height=4.5}
male = titanic[titanic$Sex=="male",]
female = titanic[titanic$Sex=="female",]
par(mfrow = c(1, 2), mar = c(0, 0, 2, 0), oma = c(0, 1, 0, 1))
pie(table(male$Survived),labels=c("Dead","Survived"), main="Survival Portion Among Men")
pie(table(female$Survived),labels=c("Dead","Survived"), main="Survival Portion Among Women")
```
---
## Is Age a good predictor?
```{r}
Age <- titanic$Age; summary(Age)
```
How about summary segmented by **survival**
```{r}
summary(titanic[titanic$Survived=="died",]$Age)
summary(titanic[titanic$Survived=="survived",]$Age)
```
***
## Age distribution by Survival and Sex
```{r, fig.width=14, fig.height=6}
par(mfrow = c(1, 2), mar = c(4, 4, 2, 2), oma = c(1, 1, 1, 1))
boxplot(titanic$Age~titanic$Sex, main="Age Distribution By Gender",col=c("red","green"))
boxplot(titanic$Age~titanic$Survived, main="Age Distribution By Survival",col=c("red","green"),
xlab="0:Died 1:Survived",ylab="Age")
```
***
## Histogram of Age
```{r, fig.width=6, fig.height=6}
hist(Age, col="blue", xlab="Age", ylab="Frequency",
main = "Distribution of Passenger Ages on Titanic")
```
***
## Kernel density plot of age
```{r, fig.width=6, fig.height=5.5}
d = density(na.omit(Age)) # density(Age) won't work, need to omit all NAs
plot(d, main = "kernel density of Ages of Titanic Passengers")
polygon(d, col="red", border="blue")
```
***
## Comparison of density plots of Age with different Sex
```{r, echo=FALSE}
titanic_na_removed = na.omit(titanic)
library(sm) # reference package, may need you to install sm library first
sm.density.compare(titanic_na_removed$Age, titanic_na_removed$Sex,xlab="Age of Passenger")
title(main="Kernel Density Plot of Ages By Sex")
colfill<-c(2:(2+ length(levels(titanic_na_removed$Sex))))
legend("topright", legend=levels(titanic_na_removed$Sex), fill=colfill)
```
***
## Did Age have an impact on survival?
```{r, echo=FALSE, fig.width=23, fig.height=8}
library(sm) # reference package, may need you to install sm library first
par(mfrow = c(1, 3), mar = c(4, 4, 5, 2), oma = c(1, 1, 2, 1))
plot(d, main = "kernel density of Ages of Titanic Passengers", cex.main=3)
polygon(d, col="red", border="blue")
sm.density.compare(titanic_na_removed$Age, titanic_na_removed$Sex,xlab="Age of Passenger")
title(main="Kernel Density Plot of Ages By Sex", cex.main=3)
colfill<-c(2:(2+ length(levels(titanic_na_removed$Sex))))
legend("topright", legend=levels(titanic_na_removed$Sex), fill=colfill)
sm.density.compare(titanic_na_removed$Age, titanic_na_removed$Survived,xlab="Age of Passenger")
title(main="Kernel Density Plot of Ages By Survival", cex.main=3)
colfill<-c(2:(2+ length(levels(titanic_na_removed$Survived))))
legend("topright", legend=levels(titanic_na_removed$Survived), fill=colfill)
```
***
## Create categorical groupings: Adult vs Child
An example of **feature engineering**!
```{r}
## Multi dimensional comparison
Child <- titanic$Age # Isolating age.
## Now we need to create categories: NA = Unknown, 1 = Child, 2 = Adult
## Every age below 13 (exclusive) is classified into age group 1
Child[Child<13] <- 1
## Every child 13 or above is classified into age group 2
Child[Child>=13] <- 2
```
```{r}
# Use labels instead of 0's and 1's
Child[Child==1] <- "Child"
Child[Child==2] <- "Adult"
# Appends the new column to the titanic dataset
titanic_with_child_column <- cbind(titanic, Child)
# Removes rows where age is NA
titanic_with_child_column <- titanic_with_child_column[!is.na(titanic_with_child_column$Child),]
```
---
## Fare matters?
```{r, echo=FALSE, fig.width=8, fig.height=6.5}
library(ggplot2)
ggplot(titanic_with_child_column, aes(y=Fare, x=Survived)) + geom_boxplot() + facet_grid(Sex~Child)
## Plot may differ depending # on your definition of a child
```
***
## How about fare, ship class, port embarkation?
```{r, echo=FALSE, fig.width=17, fig.height=5}
library(ggplot2)
titanic$Pclass = as.factor(titanic$Pclass)
ggplot(titanic, aes(y=Fare, x=Pclass)) + geom_boxplot() + facet_grid(~Embarked)
```
---
# Diamond data
<img src="Diamond.jpg", style="width:791px;height:509px"">
---
## Overview of the diamond data
```{r}
data(diamonds) # loading diamonds data set
head(diamonds, 16) # first few rows of diamond data set
```
***
## Histogram of carat
```{r, fig.width=8, fig.height=5}
library(ggplot2)
ggplot(data=diamonds) + geom_histogram(aes(x=carat))
```
***
## Density plot of carat
```{r, fig.width=8, fig.height=5}
ggplot(data=diamonds) +
geom_density(aes(x=carat),fill="gray50")
```
***
## Scatter plots (carat vs. price)
```{r, fig.width=9, fig.height=6}
ggplot(diamonds, aes(x=carat,y=price)) + geom_point()
```
***
## Carat with colors
```{r, fig.width=9, fig.height=6}
g = ggplot(diamonds, aes(x=carat, y=price)) # saving first layer as variable
g + geom_point(aes(color=color)) # rendering first layer and adding another layer
```
***
## Carat with colors (more details)
```{r, fig.width=10, fig.height=7}
g + geom_point(aes(color=color)) + facet_wrap(~color)
```
***
## Let's consider cut and clarity
```{r, fig.width=15, fig.height=8, echo=FALSE}
g + geom_point(aes(color=color)) + facet_grid(cut~clarity)
```
***
## Your trun!
What is your knowledge of diamond's price after exploring this data?
<img src="DiamondExport.jpg", style="width:568px;height:392px"">
---
# Interactive visualization in R - rCharts
* What is rCharts?
Is an R package to create, customize and publish interactive javascript visualizations from R using a familiar lattice style plotting interface.
* What rCharts can make and how?
Quick start at: http://ramnathv.github.io/rCharts/
* A list of interactive visualization in R can be found at:
http://ouzor.github.io/blog/2014/11/21/interactive-visualizations.html
---
# Tell your story - R Markdown
* R Markdown is an authoring format that enables easy creation of dynamic documents, presentations, and reports from R.
* It combines the core syntax of markdown (an easy-to-write plain text format) with embedded R code chunks that are run so their output can be included in the final document.
* Many available output formats including HTML, PDF, and MS Word
* **Installation**
Use RStudio: already installed
Outside of RStudio: install.packages("rmarkdown"). A recent version of pandoc (>= 1.12.3) is also required. See https://github.com/rstudio/rmarkdown/blob/master/PANDOC.MD to install it.
***
## Check out Markdown first
> Markdown is a markup language with plain text formatting syntax designed so that it can be converted to HTML and many other formats using a tool by the same name.
One minute you get the point, and always check the cheat sheets
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet#lists
***
## Then, R Markdown sample code
Download the template:
https://github.com/datasciencedojo/datasets/blob/master/rmarkdownd_template.Rmd
## R Markdown
* YAML header
* Edit Markdown, and R chunks
* Run!
RStudio: knitr button
Command line: render("file.Rmd")
Cheat sheet of rmarkdown:
http://www.rstudio.com/wp-content/uploads/2015/02/rmarkdown-cheatsheet.pdf
---
# Present your story of Titanic!
Use
* Titanic data
* Plotting functions in R
* R Markdown template
* **The heart of data explorer**
to write your story of Titanic...
***
## Hope this is inspiring :)
[Titanic](https://vimeo.com/21941048)