-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCBF-PEZ.py
270 lines (212 loc) · 10.9 KB
/
CBF-PEZ.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import pandas as pd
import itertools
import scipy.sparse as sp
from sklearn.feature_extraction.text import TfidfTransformer
import numpy as np
from sklearn import preprocessing
import sklearn.metrics.pairwise as metrics
def save_sparse_csr(filename,array):
np.savez(filename,data = array.data ,indices=array.indices,
indptr =array.indptr, shape=array.shape )
# Returns the list of tags that appear at least min_k times
def more_than_k_occurrences(t, min_k):
keys = np.unique(t)
counts = [0] * len(keys)
tag_dict = dict(zip(keys, counts))
for tag in range(len(t)):
tag_dict[t[tag]] += 1
tags_more_than_one_occurrence = []
for tag in tag_dict.keys():
if tag_dict.get(tag) > min_k:
tags_more_than_one_occurrence.append(tag)
return np.unique(tags_more_than_one_occurrence)
# Compute the one hot encoding representation for tags on items
def one_hot_encoding_tags(items):
print("Computing One Hot Encoding for tags..")
item_tags = items['tags'].reset_index()
item_tags['tags'] = item_tags['tags'].apply(lambda x: str(x).split(','))
tags = item_tags['tags'].tolist()
flattened_tags = list(itertools.chain.from_iterable(tags))
min_k = 2
flattened_tags = np.asarray(more_than_k_occurrences(flattened_tags, min_k))
flattened_tags = np.delete(flattened_tags, 0)
tag_indexes = [i for i in range(0, len(flattened_tags))]
# Dictionary containing for each tag its id
# Key: tag
# Value: index
tags_dict = dict(zip(flattened_tags, tag_indexes))
items_id_tag = items.drop_duplicates('id')[['id', 'tags']]
items_id_tag['tags'] = items['tags'].apply(lambda x: x.split(','))
# Dictionary containing for each item its tags
# Key: item_id
# Value: list of tags
item_tags_dict = dict(zip(items['id'].tolist(), items['tags'].tolist()))
ids = items['item_index'].tolist()
items_dict = dict(zip(items['id'], ids))
row_indexes = []
col_indexes = []
tag_values = []
for item in item_tags_dict.keys():
tags = str(item_tags_dict.get(item)).split(',')
item_index = items_dict.get(item)
cols = []
for tag in tags:
tag_index = tags_dict.get(tag)
if tag_index != None:
row_indexes.append(item_index)
cols.append(tags_dict.get(tag))
col_indexes.extend(cols)
vals = [1] * len(cols)
tag_values.extend(vals)
tags_ohe = sp.coo_matrix((tag_values, (row_indexes, col_indexes)), shape=(len(items), len(tag_indexes)))
zero_index = tags_dict.get('0')
tags_ohe = tags_ohe.tocsc()
if zero_index != None:
tags_ohe = tags_ohe[:,zero_index] = 0
return tags_ohe
def one_hot_encoding_titles(items):
print("Computing One Hot Encoding for titles..")
item_titles = items['title'].reset_index()
item_titles['title'] = item_titles['title'].apply(lambda x: str(x).split(','))
titles = item_titles['title'].tolist()
flattened_titles = list(itertools.chain.from_iterable(titles))
min_k = 1
flattened_titles = np.asarray(more_than_k_occurrences(flattened_titles, min_k))
flattened_titles = np.delete(flattened_titles, 0)
title_indexes = [i for i in range(0, len(flattened_titles))]
# Dictionary containing for each title its id
# Key: title
# Value: index
titles_dict = dict(zip(flattened_titles, title_indexes))
items_id_title = items.drop_duplicates('id')[['id', 'title']]
items_id_title['title'] = items['title'].apply(lambda x: x.split(','))
# Dictionary containing for each item its title
# Key: item_id
# Value: list of tags
item_titles_dict = dict(zip(items['id'].tolist(), items['title'].tolist()))
ids = items['item_index'].tolist()
items_dict = dict(zip(items['id'], ids))
row_indexes = []
col_indexes = []
tag_values = []
for item in item_titles_dict.keys():
titles = str(item_titles_dict.get(item)).split(',')
item_index = items_dict.get(item)
cols = []
for title in titles:
title_index = titles_dict.get(title)
if title_index != None:
row_indexes.append(item_index)
cols.append(titles_dict.get(title))
col_indexes.extend(cols)
vals = [1] * len(cols)
tag_values.extend(vals)
tags_ohe = sp.coo_matrix((tag_values, (row_indexes, col_indexes)), shape=(len(items), len(title_indexes)))
zero_index = titles_dict.get('0')
tags_ohe = tags_ohe.tocsc()
if zero_index != None:
tags_ohe = tags_ohe[:, zero_index] = 0
return tags_ohe
VALIDATION = False
# Load datasets
item_profile = pd.read_table("item_profile.csv")
interactions = pd.read_table("training_data.csv")
target_users_tot = pd.read_table("target_users.csv")
target_users = target_users_tot
target_users['recommended_tags_items'] = 0
target_users['points_tag'] = 0
target_users['recommended_titles_items'] = 0
target_users['points_tit'] = 0
target_users['recommended_TT_items'] = 0
target_users['points_tt'] = 0
# Get the list of unique item_ids that were in at least one interaction
item_profile = item_profile.drop_duplicates('id').reset_index()
# Assign to each item an incremental index
item_profile.loc[:, 'item_index'] = 0
item_profile['item_index'] = item_profile.index
item_profile = item_profile[['item_index', 'id', 'active_during_test','country','region','tags','title']].fillna('0')
#Number of elements in tags and titles for each item
item_profile['cont_tags'] = item_profile['tags'].apply(lambda x: len(str(x).split(',')) if x != '0' else 0 )
item_profile['cont_title'] = item_profile['title'].apply(lambda x: len(str(x).split(',')) if x != '0' else 0)
one_hot_tags = one_hot_encoding_tags(item_profile[['id', 'item_index', 'tags']])
one_hot_titles = one_hot_encoding_titles(item_profile[['id', 'item_index', 'title']])
one_hot_tags = one_hot_tags.tocsc()
one_hot_titles = one_hot_titles.tocsc()
interactions = pd.merge(interactions, item_profile, left_on='item_id', right_on='id')[['user_id', 'item_id',
'item_index', 'active_during_test',
'created_at','country']]
interactions = interactions.drop_duplicates(['user_id', 'item_id'])
#interactions = interactions.sort_values(by=['user_id', 'item_id'])
# Get the list of unique user_ids that had at least one interactions
user_ids = target_users.drop_duplicates('user_id').reset_index()
# Assign to each user an incremental index
user_ids.loc[:, 'user_index'] = 0
user_ids['user_index'] = user_ids.index
user_ids = user_ids[['user_id', 'user_index']]
# Append that index to the interactions dataframe
interactions = pd.merge(interactions, user_ids, on='user_id')[['user_id', 'user_index',
'item_id', 'item_index',
'created_at', 'active_during_test','country']]
# Find item_index of active items
active_indices = item_profile[item_profile['active_during_test'] != 0].drop_duplicates('item_index')
interactions = interactions.drop('country',axis=1)
# Find complete list of item indices
item_indices_list = np.asarray(item_profile['item_index'].tolist())
item_profile_active = item_profile.iloc[active_indices['item_index'].tolist()]
#item_weight_active = active_indices['points'].tolist()
one_hot_tags_t = one_hot_tags[active_indices['item_index'].tolist(), :].T.copy()
one_hot_titles_t = one_hot_titles[active_indices['item_index'].tolist(), :].T.copy()
interactions = interactions.drop('active_during_test',axis=1)
interactions = pd.merge(interactions,item_profile,how='left',on='item_index').fillna(0)
#active_indices = active_indices.sort('item_index')
num_elem = 50
ai = active_indices.reset_index().drop('index',axis=1)
matrix = np.zeros(shape=[len(target_users),len(active_indices['item_index'])])
for u in range(len(target_users)):
top_k_ids = []
print("Making recommendations: ", u, "users done ", len(target_users) - u, " to go")
user = target_users['user_id'].iloc[u]
rated_items = interactions[interactions['user_id'] == user]
if len(rated_items) != 0:
rated_items_list = rated_items['item_index'].tolist()
#Computes Tags sim matrix
current_one_hot_tags = one_hot_tags[rated_items_list, :].copy()
current_tags_intersection = current_one_hot_tags.dot(one_hot_tags_t)
current_tags_union = current_tags_intersection.copy().power(0)
current_tags_union_t = current_tags_union.T.copy()
rated_cont = rated_items['cont_tags'].tolist()
current_tags_union = current_tags_union.dot(sp.diags(item_profile_active['cont_tags'].tolist()))
current_tags_union_t = current_tags_union_t.dot(sp.diags(rated_cont))
current_tags_union = current_tags_union + current_tags_union_t.T
current_tags_union = current_tags_union - current_tags_intersection
current_tags_sim_matrix = current_tags_intersection.multiply(current_tags_union.power(-1))
#Computes Tags sim vector
current_tags_sim_vector = current_tags_sim_matrix.sum(axis=0)
current_tags_sim_vector = np.array(current_tags_sim_vector)[0]
#Computes Titles sim matrix
current_one_hot_titles = one_hot_titles[rated_items_list, :].copy()
current_titles_intersection = current_one_hot_titles.dot(one_hot_titles_t)
current_titles_union = current_titles_intersection.copy().power(0)
current_titles_union_t = current_titles_union.T.copy()
rated_cont = rated_items['cont_title'].tolist()
current_titles_union = current_titles_union.dot(sp.diags(item_profile_active['cont_title'].tolist()))
current_titles_union_t = current_titles_union_t.dot(sp.diags(rated_cont))
current_titles_union = current_titles_union + current_titles_union_t.T
current_titles_union = current_titles_union - current_titles_intersection
current_titles_sim_matrix = current_titles_intersection.multiply(current_titles_union.power(-1))
#computes titles sim vector
current_titles_sim_vector = current_titles_sim_matrix.sum(axis=0)
current_titles_sim_vector = np.array(current_titles_sim_vector)[0] ###########################################
#rated items by the current user
rated = interactions[interactions['user_id'] == user]
active_rated = list(rated[:][rated['active_during_test'] != 0]['item_index'])
active_rated_index = []
ar = ai[ai['item_index'].isin(active_rated)].index
current_titles_sim_vector[ar] = 0
current_tags_sim_vector[ar] = 0
top_k_TT_sum = ( 0.65 * current_tags_sim_vector + 0.35 * current_titles_sim_vector) #* item_weight_active
ma = top_k_TT_sum.max()
top_k_TT_sum = top_k_TT_sum / ma
matrix[u,:] = top_k_TT_sum
matrix = sp.csc_matrix(matrix)
save_sparse_csr('CBF_ITEM_ITEM', matrix.tocsr())