-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCBF-tags.py
136 lines (103 loc) · 4.94 KB
/
CBF-tags.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
from __future__ import division
import numpy as np
import pandas as pd
import nltk
from scipy import sparse as sps
def save_sparse_csr(filename, array):
np.savez(filename, data=array.data, indices=array.indices,
indptr=array.indptr, shape=array.shape)
items = pd.read_csv("item_profile.csv", delimiter='\t')
attivipd = items[items['active_during_test'] == 1]
items_nact_ids = items[items['active_during_test'] == 0]['id'].drop_duplicates().values
target_users = pd.read_csv("target_users.csv", delimiter='\t')
users = target_users['user_id'].values
ids = items['id'].values
index_to_ids = dict(zip(range(ids.size), ids))
ids_to_index = {v: k for k, v in index_to_ids.items()}
items_attivi_indices = [ids_to_index.get(i) for i in attivipd['id'].values]
index_to_uds = dict(zip(range(users.size), users))
uds_to_index = {v: k for k, v in index_to_uds.items()}
user_profile = pd.read_csv("user_profile.csv", delimiter='\t')
uds2 = user_profile['user_id'].values
index_to_uds2 = dict(zip(range(uds2.size), uds2))
uds_to_index2 = {v: k for k, v in index_to_uds2.items()}
items = items[['id', 'tags']]
items = items.fillna(0)
items = items[(items['tags'] != 0) & (items['tags'] != '0')]
def spit(s):
return s.split(',')
corpus = items['tags'].ravel()
alltags = [tag for tags in list(map(spit, corpus)) for tag in tags]
fdist = nltk.FreqDist(alltags)
tags = [k for k in fdist.keys() if fdist.get(k) > 1]
tags = np.array(tags).astype(int)
data = pd.concat([pd.Series(row['id'], row['tags'].split(',')) for _, row in items.iterrows()]).reset_index()
data = data[data.columns[::-1]].rename(index=str, columns={"index": "tag", 0: "item_id"})
data = data.reset_index().drop('index', 1)
data['tag'] = data['tag'].astype(int)
data = data[data.tag.isin(tags)]
# data = pd.read_csv("tags.csv", delimiter='\,',engine='python').drop('Unnamed: 0',1)
tags = np.unique(data['tag'].values)
tag_to_index = dict(zip(tags, range(len(tags))))
data['y'] = 1
data['item_index'] = [ids_to_index.get(i) for i in data['item_id']]
data['tag_index'] = [tag_to_index.get(i) for i in data['tag']]
icm = sps.csr_matrix((data['y'], (data['item_index'], data['tag_index'])))
icm = icm.astype(bool).astype(int)
td = pd.read_csv('interactions.csv', delimiter="\t")
def interagiti(user_id):
return np.unique(td[td['user_id'] == user_id]['item_id'].values)
ICM = icm[items_attivi_indices]
all_cont = list(np.array(ICM.sum(axis=1)).ravel())
R_out = np.zeros((10000, 167956))
remaining = len(users)
confint2 = pd.read_csv('interactions.csv', delimiter='\t')
confint2 = confint2.drop('created_at', 1)
confint2 = confint2.groupby(['user_id', 'item_id']).aggregate(np.sum).reset_index()
T = dict(zip(zip(confint2['user_id'].values, confint2['item_id'].values), confint2['interaction_type'].values))
timeint = pd.read_csv('interactions.csv', delimiter="\t")
times = timeint.sort_values(['user_id', 'created_at'], ascending=[True, False])
times = times.groupby(['user_id','item_id']).aggregate(np.max).reset_index().sort_values(['user_id','created_at'],ascending=[True,False])
latest_grp = times[['user_id','created_at']].groupby('user_id').first().reset_index()
latest_dict = dict(zip(latest_grp['user_id'].values,latest_grp['created_at'].values))
current_dict = dict(zip(zip(times['user_id'].values,times['item_id'].values),times['created_at'].values))
def time_decay(ud,id):
tau = float(60 * 60 * 24 * 7) #month in seconds
latest = latest_dict.get(ud, 0)
current = current_dict.get((ud,id), 0)
lam = 1/tau
delta = latest - current
return (1+(lam*delta))**(-1)
def t(u,i):
x = T.get((u,i),0)
return np.log(1+x)
for u in users:
seen = interagiti(u)
if seen.size > 0:
seen_indices = [ids_to_index.get(s) for s in seen]
curr = icm[seen_indices].copy()
curr = curr.astype(float)
confidence_scores = np.array(list(map(t, np.zeros(seen.size) + u, seen)))
confidence_scores = np.zeros(curr.shape) + confidence_scores.reshape(len(confidence_scores), 1)
time_scores = np.array(list(map(time_decay, np.zeros(seen.size) + u, seen)))
time_scores = np.zeros(curr.shape) + time_scores.reshape(len(time_scores), 1)
curr = curr.multiply(time_scores)
curr = curr.multiply(confidence_scores)
curr_intersection = curr.dot(ICM.T)
U = curr_intersection.copy()#.power(0)
Ut = U.T.copy()
rated_cont = list(np.array(curr.sum(axis=1)).ravel())
U = U.dot(sps.diags(all_cont))
Ut = Ut.dot(sps.diags(rated_cont))
U = U + Ut.T
U = U - curr_intersection
sim = curr_intersection.multiply(U.power(-1))
rec = np.zeros(167956)
rec[items_attivi_indices] = np.array(sim.sum(axis=0)).ravel()
rec[seen_indices] = 0
rec = np.true_divide(rec, np.max(rec))
R_out[uds_to_index.get(u)] = rec
remaining -= 1
print(str(remaining))
save_sparse_csr('CBF_tags_ALL1',sps.csr_matrix(R_out[0:5000]))
save_sparse_csr('CBF_tags_ALL2',sps.csr_matrix(R_out[5000:10000]))