Skip to content

Latest commit

 

History

History
 
 

binary-tree-vertical-order-traversal

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 

Leetcode: Binary Tree Vertical Order Traversal


Binary Tree Vertical Order Traversal


Similar Problems:


Given a binary tree, return the vertical order traversal of its nodes’ values. (ie, from top to bottom, column by column).

If two nodes are in the same row and column, the order should be from left to right.

Examples:

  • Given binary tree [3,9,20,null,null,15,7],
  3
 /\
/  \
9  20
   /\
  /  \
 15   7

return its vertical order traversal as:

[
  [9],
  [3,15],
  [20],
  [7]
]
  • Given binary tree [3,9,8,4,0,1,7],
     3
    /\
  /   \
  9     8
 /\    /\
/  \  /  \
4  0  1   7

return its vertical order traversal as:

[
  [4],
  [9],
  [3,0,1],
  [8],
  [7]
]
  • Given binary tree [3,9,8,4,0,1,7,null,null,null,2,5] (0’s right child is 2 and 1’s left child is 5),
     3
   /  \
  /    \
  9     8
 /\    /\
/  \  /  \
4  0  1   7
    \/
   / \
  5   2

return its vertical order traversal as:

[
  [4],
  [9,5],
  [3,0,1],
  [8,2],
  [7]
]

Github: code.dennyzhang.com

Credits To: leetcode.com

Leave me comments, if you have better ways to solve.


## https://code.dennyzhang.com/binary-tree-vertical-order-traversal
## Basic Ideas: BFS + hashmap
##
## Complexity: Time O(n), Space O(n)
##
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None
import collections
class Solution:
    def verticalOrder(self, root):
        """
        :type root: TreeNode
        :rtype: List[List[int]]
        """
        if root is None: return []
        d = collections.defaultdict(lambda: [])
        queue = collections.deque([(root, 0)])
        d[0].append(root.val)
        while len(queue) != 0:
            for k in range(len(queue)):
                (node, position) = queue.popleft()
                if node.left:
                    d[position-1].append(node.left.val)
                    queue.append((node.left, position-1))
                if node.right:
                    d[position+1].append(node.right.val)
                    queue.append((node.right, position+1))
        res = []
        for position in sorted(d.keys()):
            res.append(d[position])
        return res