forked from ElementsProject/lightning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlightningd.c
1429 lines (1238 loc) · 51.4 KB
/
lightningd.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*~ Welcome, wonderful reader!
*
* This is the Core of um, Core Lightning: the main file of the master daemon
* `lightningd`. It's mainly cluttered with the miscellany of setup,
* and a few startup sanity checks.
*
* The role of this daemon is to start the subdaemons, shuffle peers
* between them, handle the JSON RPC requests, bitcoind, the database
* and centralize logging. In theory, it doesn't trust the other
* daemons, though we expect `hsmd` (which holds secret keys) to be
* responsive.
*
* Comments beginning with a ~ (like this one!) are part of our shared
* adventure through the source, so they're more meta than normal code
* comments, and meant to be read in a certain order.
*/
/*~ Notice how includes are in ASCII order: this is actually enforced by
* the build system under `make check-source`. It avoids merge conflicts
* and keeps things consistent. It also make sure you include "config.h"
* before anything else. */
#include "config.h"
/*~ This is Ian Lance Taylor's libbacktrace. It turns out that it's
* horrifically difficult to obtain a decent backtrace in C; the standard
* backtrace function is useless in most programs. */
/*~ These headers are from CCAN: http://ccodearchive.net.
*
* It's another one of Rusty's projects, and we copy and paste it
* automatically into the source tree here, so you should never edit
* it. There's a Makefile target update-ccan to update it (and add modules
* if CCAN_NEW is specified).
*
* The most used of these are `ccan/tal` and `ccan/take`, which we'll describe
* in detail below.
*/
#include <ccan/array_size/array_size.h>
#include <ccan/closefrom/closefrom.h>
#include <ccan/json_escape/json_escape.h>
#include <ccan/opt/opt.h>
#include <ccan/pipecmd/pipecmd.h>
#include <ccan/read_write_all/read_write_all.h>
#include <ccan/tal/grab_file/grab_file.h>
#include <ccan/tal/path/path.h>
#include <ccan/tal/str/str.h>
/*~ This is common code: routines shared by one or more executables
* (separate daemons, or the lightning-cli program). */
#include <common/daemon.h>
#include <common/ecdh_hsmd.h>
#include <common/hsm_encryption.h>
#include <common/json_stream.h>
#include <common/memleak.h>
#include <common/timeout.h>
#include <common/trace.h>
#include <common/type_to_string.h>
#include <common/version.h>
#include <db/exec.h>
#include <errno.h>
#include <fcntl.h>
#include <header_versions_gen.h>
#include <hsmd/hsmd_wiregen.h>
#include <lightningd/chaintopology.h>
#include <lightningd/channel.h>
#include <lightningd/channel_control.h>
#include <lightningd/coin_mvts.h>
#include <lightningd/connect_control.h>
#include <lightningd/gossip_control.h>
#include <lightningd/hsm_control.h>
#include <lightningd/io_loop_with_timers.h>
#include <lightningd/lightningd.h>
#include <lightningd/onchain_control.h>
#include <lightningd/plugin.h>
#include <lightningd/plugin_hook.h>
#include <lightningd/runes.h>
#include <lightningd/subd.h>
#include <sys/resource.h>
#include <wallet/invoices.h>
#include <wallet/txfilter.h>
#include <wally_bip32.h>
static void destroy_alt_subdaemons(struct lightningd *ld);
#if DEVELOPER
static void memleak_help_alt_subdaemons(struct htable *memtable,
struct lightningd *ld);
#endif /* DEVELOPER */
/*~ The core lightning object: it's passed everywhere, and is basically a
* global variable. This new_xxx pattern is something we'll see often:
* it allocates and initializes a new structure, using *tal*, the hierarchical
* allocator. */
static struct lightningd *new_lightningd(const tal_t *ctx)
{
/*~ tal: each allocation is a child of an existing object (or NULL,
* the top-level object). When an object is freed, all the objects
* `tallocated` off it are also freed. We use it in place of malloc
* and free. For the technically inclined: tal allocations usually
* build a tree, and tal_freeing any node in the tree will result in
* the entire subtree rooted at that node to be freed.
*
* It's incredibly useful for grouping object lifetimes, as we'll see.
* For example, a `struct lightningd` has a pointer to a `log_book`
* which is allocated off the `struct lightningd`, and has its own
* internal members allocated off `log_book`: freeing `struct
* lightningd` frees them all.
*
* In this case, freeing `ctx` will free `ld`:
*/
struct lightningd *ld = tal(ctx, struct lightningd);
/*~ Style note: `ctx` is declared `const`, yet we can `tallocate` from
* it. Adding/removing children is not considered to change an
* object; nor, in fact, is freeing it with tal_free(). This allows
* us to use const more liberally: the style rule here is that you
* should use 'const' on pointers if you can. */
/*~ Note that we generally EXPLICITLY #if-wrap DEVELOPER code. This
* is a nod to keeping it minimal and explicit: we need this code for
* testing, but its existence means we're not actually testing the
* same exact code users will be running. */
#if DEVELOPER
ld->dev_debug_subprocess = NULL;
ld->dev_no_plugin_checksum = false;
ld->dev_disconnect_fd = -1;
ld->dev_subdaemon_fail = false;
ld->dev_allow_localhost = false;
ld->dev_gossip_time = 0;
ld->dev_fast_gossip = false;
ld->dev_fast_gossip_prune = false;
ld->dev_fast_reconnect = false;
ld->dev_force_privkey = NULL;
ld->dev_force_bip32_seed = NULL;
ld->dev_force_channel_secrets = NULL;
ld->dev_force_channel_secrets_shaseed = NULL;
ld->dev_force_tmp_channel_id = NULL;
ld->dev_no_htlc_timeout = false;
ld->dev_no_version_checks = false;
ld->dev_max_funding_unconfirmed = 2016;
ld->dev_ignore_modern_onion = false;
ld->dev_disable_commit = -1;
ld->dev_no_ping_timer = false;
#endif
/*~ This is a CCAN list: an embedded double-linked list. It's not
* really typesafe, but relies on convention to access the contents.
* It's inspired by the closely-related Linux kernel list.h.
*
* You declare them as a `struct list_head` (or use the LIST_HEAD()
* macro which doesn't work on dynamically-allocated objects like `ld`
* here). The item which will go into the list must be declared
* a `struct list_node` for each list it can be in.
*
* The most common operations are list_head_init(), list_add(),
* list_del() and list_for_each().
*
* This method of manually declaring the list hooks avoids dynamic
* allocations to put things into a list. */
list_head_init(&ld->subds);
/*~ These are hash tables of incoming and outgoing HTLCs (contracts),
* defined as `struct htlc_in` and `struct htlc_out` in htlc_end.h.
* The hash tables are declared there using the very ugly
* HTABLE_DEFINE_TYPE macro. The key is the channel the HTLC is in
* and the 64-bit htlc-id which is unique for that channel and
* direction. That htlc-id is used in the inter-peer wire protocol,
* so it is the logical key.
*
* There aren't usually many HTLCs, so we could have just used a linked
* list attached to the channel structure itself, or even left them in
* the database rather than making an in-memory version. Obviously
* I was in a premature optimization mood when I wrote this: */
ld->htlcs_in = tal(ld, struct htlc_in_map);
htlc_in_map_init(ld->htlcs_in);
/*~ Note also: we didn't need to use an allocation here! We could
* have simply made the `struct htlc_out_map` a member. But we
* override the htable allocation routines to use tal(), and they
* want a tal parent, so we always make our hash table a tallocated
* object. */
ld->htlcs_out = tal(ld, struct htlc_out_map);
htlc_out_map_init(ld->htlcs_out);
/*~ This is the hash table of peers: converted from a
* linked-list as part of the 100k-peers project! */
ld->peers = tal(ld, struct peer_node_id_map);
peer_node_id_map_init(ld->peers);
/*~ And this was done at the same time, for db lookups at startup */
ld->peers_by_dbid = tal(ld, struct peer_dbid_map);
peer_dbid_map_init(ld->peers_by_dbid);
/*~ For multi-part payments, we need to keep some incoming payments
* in limbo until we get all the parts, or we time them out. */
ld->htlc_sets = tal(ld, struct htlc_set_map);
htlc_set_map_init(ld->htlc_sets);
/*~ We have a multi-entry log-book infrastructure: we define a 10MB log
* book to hold all the entries (and trims as necessary), and multiple
* log objects which each can write into it, each with a unique
* prefix. */
ld->log_book = new_log_book(ld, 10*1024*1024);
/*~ Note the tal context arg (by convention, the first argument to any
* allocation function): ld->log will be implicitly freed when ld
* is. */
ld->log = new_logger(ld, ld->log_book, NULL, "lightningd");
ld->logfiles = NULL;
/*~ We explicitly set these to NULL: if they're still NULL after option
* parsing, we know they're to be set to the defaults. */
ld->alias = NULL;
ld->rgb = NULL;
ld->recover = NULL;
list_head_init(&ld->connects);
list_head_init(&ld->waitsendpay_commands);
list_head_init(&ld->sendpay_commands);
list_head_init(&ld->close_commands);
list_head_init(&ld->ping_commands);
list_head_init(&ld->disconnect_commands);
list_head_init(&ld->splice_commands);
list_head_init(&ld->waitblockheight_commands);
list_head_init(&ld->wait_commands);
/*~ Tal also explicitly supports arrays: it stores the number of
* elements, which can be accessed with tal_count() (or tal_bytelen()
* for raw bytecount). It's common for simple arrays to use
* tal_resize() (or tal_arr_expand) to expand, which does not work on
* NULL. So we start with a zero-length array. */
ld->proposed_wireaddr = tal_arr(ld, struct wireaddr_internal, 0);
ld->proposed_listen_announce = tal_arr(ld, enum addr_listen_announce, 0);
/*~ The network is not yet ready for DNS names inside node_announcements,
* so we disable this by default for now. */
ld->announce_dns = false;
ld->remote_addr_v4 = NULL;
ld->remote_addr_v6 = NULL;
ld->discovered_ip_v4 = NULL;
ld->discovered_ip_v6 = NULL;
ld->listen = true;
ld->autolisten = true;
ld->reconnect = true;
ld->try_reexec = false;
ld->db_upgrade_ok = NULL;
/* --experimental-upgrade-protocol */
ld->experimental_upgrade_protocol = false;
/*~ This is from ccan/timer: it is efficient for the case where timers
* are deleted before expiry (as is common with timeouts) using an
* ingenious bucket system which more precisely sorts timers as they
* approach expiry. It's a fascinating implementation you should read
* if you have a spare few hours. */
ld->timers = tal(ld, struct timers);
timers_init(ld->timers, time_mono());
/*~ This is detailed in chaintopology.c */
ld->topology = new_topology(ld, ld->log);
ld->gossip_blockheight = 0;
ld->daemon_parent_fd = -1;
ld->proxyaddr = NULL;
ld->always_use_proxy = false;
ld->pure_tor_setup = false;
ld->tor_service_password = NULL;
ld->websocket_port = 0;
ld->deprecated_apis = true;
/*~ This is initialized later, but the plugin loop examines this,
* so set it to NULL explicitly now. */
ld->wallet = NULL;
/*~ Behavioral options */
ld->accept_extra_tlv_types = tal_arr(ld, u64, 0);
/*~ In the next step we will initialize the plugins. This will
* also populate the JSON-RPC with passthrough methods, hence
* lightningd needs to have something to put those in. This
* is that :-)
*/
jsonrpc_setup(ld);
/*~ We run a number of plugins (subprocesses that we talk JSON-RPC with)
* alongside this process. This allows us to have an easy way for users
* to add their own tools without having to modify the Core Lightning source
* code. Here we initialize the context that will keep track and control
* the plugins.
*/
ld->plugins = plugins_new(ld, ld->log_book, ld);
ld->plugins->startup = true;
/*~ This is set when a JSON RPC command comes in to shut us down. */
ld->stop_conn = NULL;
/*~ This is used to signal that `hsm_secret` is encrypted, and will
* be set to `true` if the `--encrypted-hsm` option is passed at startup.
*/
ld->encrypted_hsm = false;
/* This is used to override subdaemons */
strmap_init(&ld->alt_subdaemons);
tal_add_destructor(ld, destroy_alt_subdaemons);
memleak_add_helper(ld, memleak_help_alt_subdaemons);
/*~ We change umask if we daemonize, but not if we don't. Initialize the
* initial_umask anyway as we might rely on it later (`plugin start`). */
ld->initial_umask = umask(0);
umask(ld->initial_umask);
/*~ This is the mode of the created JSON-RPC socket file, in
* traditional Unix octal. 0600 means only the user that ran
* lightningd can invoke RPC on it. Changing it to 0660 may
* be sensible if you run lightningd in its own system user,
* and just let specific users (add the group of the
* lightningd runner as an ancillary group) access its
* RPC. Can be overridden with `--rpc-file-mode`.
*/
ld->rpc_filemode = 0600;
/*~ This is the exit code to use on exit.
* Set to NULL meaning we are not interested in exiting yet.
*/
ld->exit_code = NULL;
/*~ We maintain a round-robin list of channels.
* This round-robin list of channels is used to ensure that
* each invoice we generate has a different set of channels. */
ld->rr_counter = 0;
/*~ Because fee estimates on testnet and regtest are unreliable,
* we allow overriding them with --force-feerates, in which
* case this is a pointer to an enum feerate-indexed array of values */
ld->force_feerates = NULL;
/*~ We need some funds to help CPFP spend unilateral closes. How
* much? But let's assume we want to boost the commitment tx (1112
* Sipa).
*
* Anchor witness script is 40 bytes, sig is 72, input bytes is 32 + 4
* + 1 + 1 + 4, core is 10 bytes, P2WKH output is 8 + 1 + 1 + 1 + 32
* bytes. Weight (40 + 42 + 10 + 43)*4 + 40 + 72 = 652.
*
* So every 441 sats we can increase feerate by 1 sat / vbyte. Set
* the default minimum at 25,000 sats.
*/
ld->emergency_sat = AMOUNT_SAT(25000);
return ld;
}
/*~ We list our daemons here so on startup we can test they're the
* correct versions and that they exist. */
static const char *subdaemons[] = {
"lightning_channeld",
"lightning_closingd",
"lightning_connectd",
"lightning_gossipd",
"lightning_hsmd",
"lightning_onchaind",
"lightning_openingd"
};
/* Return true if called with a recognized subdaemon e.g. "hsmd" */
bool is_subdaemon(const char *sdname)
{
for (size_t i = 0; i < ARRAY_SIZE(subdaemons); i++)
/* Skip the "lightning_" prefix in the table */
if (streq(sdname, subdaemons[i] + strlen("lightning_")))
return true;
return false;
}
static void destroy_alt_subdaemons(struct lightningd *ld)
{
strmap_clear(&ld->alt_subdaemons);
}
#if DEVELOPER
static void memleak_help_alt_subdaemons(struct htable *memtable,
struct lightningd *ld)
{
memleak_scan_strmap(memtable, &ld->alt_subdaemons);
}
#endif /* DEVELOPER */
const char *subdaemon_path(const tal_t *ctx, const struct lightningd *ld, const char *name)
{
/* Strip the leading "lightning_" before looking in alt_subdaemons.
*/
size_t pfxlen = strlen("lightning_");
assert(strlen(name) > pfxlen);
const char *short_name = tal_strdup(ctx, name + pfxlen);
/* Is there an alternate path for this subdaemon? */
const char *dpath;
const char *alt = strmap_get(&ld->alt_subdaemons, short_name);
if (alt) {
/* path_join will honor absolute paths as well. */
dpath = path_join(ctx, ld->daemon_dir, alt);
} else {
/* This subdaemon is found in the standard place. */
dpath = path_join(ctx, ld->daemon_dir, name);
}
return dpath;
}
/*~ Check we can run them, and check their versions */
void test_subdaemons(const struct lightningd *ld)
{
size_t i;
/*~ CCAN's ARRAY_SIZE() should always be used on defined arrays like
* the subdaemons array above. You can calculate the number of
* elements it has using `sizeof(subdaemons)/sizeof(subdaemons[0])`
* but if `subdaemons` were refactored into a pointer (eg. to make
* it a dynamic array) that would erroneously evaluate to `1`.
*
* ARRAY_SIZE will cause a compiler error if the argument is actually
* a pointer, not an array. */
for (i = 0; i < ARRAY_SIZE(subdaemons); i++) {
/*~ CCAN's path module uses tal, so wants a context to
* allocate from. We have a magic convenience context
* `tmpctx` for temporary allocations like this.
*
* Because all our daemons at their core are of form `while
* (!stopped) handle_events();` (an event loop pattern), we
* can free `tmpctx` in that top-level loop after each event
* is handled.
*/
int outfd;
const char *dpath = subdaemon_path(tmpctx, ld, subdaemons[i]);
const char *verstring;
/*~ CCAN's pipecmd module is like popen for grownups: it
* takes pointers to fill in stdin, stdout and stderr file
* descriptors if desired, and the remainder of arguments
* are the command and its argument. */
pid_t pid = pipecmd(NULL, &outfd, &outfd,
dpath, "--version", NULL);
/*~ Our logging system: spam goes in at log_debug level, but
* logging is mainly added by developer necessity and removed
* by developer/user complaints. The only strong convention
* is that log_broken() is used for "should never happen".
*
* Note, however, that logging takes care to preserve the
* global `errno` which is set above. */
log_debug(ld->log, "testing %s", dpath);
/*~ ccan/err is a wrapper around BSD's err.h, which defines
* the convenience functions err() (error with message
* followed by a string based on errno) and errx() (same,x
* but no errno string). */
if (pid == -1)
err(EXITCODE_SUBDAEMON_FAIL, "Could not run %s", dpath);
/*~ CCAN's grab_file module contains a routine to read into a
* tallocated buffer until EOF */
verstring = grab_fd(tmpctx, outfd);
/*~ Like many CCAN modules, it set errno on failure, which
* err (ccan/err, but usually just the BSD <err.h>) prints */
if (!verstring)
err(1, "Could not get output from %s", dpath);
/*~ strstarts is from CCAN/str. */
if (!strstarts(verstring, version())
|| verstring[strlen(version())] != '\n')
errx(EXITCODE_SUBDAEMON_FAIL, "%s: bad version '%s'",
subdaemons[i], verstring);
/*~ The child will be reaped by sigchld_rfd_in, so we don't
* need to waitpid() here. */
}
}
/* Check if all subdaemons exist in specified directory. */
static bool has_all_subdaemons(const char *daemon_dir)
{
size_t i;
bool missing_daemon = false;
for (i = 0; i < ARRAY_SIZE(subdaemons); ++i) {
if (!path_is_file(path_join(tmpctx, daemon_dir, subdaemons[i]))) {
missing_daemon = true;
break;
}
}
return !missing_daemon;
}
/* Returns the directory this executable is running from */
static const char *find_my_directory(const tal_t *ctx, const char *argv0)
{
/* find_my_abspath simply exits on failure, so never returns NULL. */
const char *me = find_my_abspath(NULL, argv0);
/*~ The caller just wants the directory we're in.
*
* Note the magic `take()` macro here: it annotates a pointer as "to
* be taken", and the recipient is expected to take ownership of the
* pointer. This improves efficiency because the recipient might
* choose to use or even keep it rather than make a copy (or it
* might just free it).
*
* Many CCAN and our own routines support this, but if you hand a
* `take()` to a routine which *doesn't* expect it, unfortunately you
* don't get a compile error (we have runtime detection for this
* case, however).
*/
return path_dirname(ctx, take(me));
}
/*~ This returns the PKGLIBEXEC path which is where binaries get installed.
* Note the `TAKES` annotation which indicates that the `my_path` parameter
* can be take(); in which case, this function will handle freeing it.
*
* TAKES is only a convention unfortunately, and ignored by the compiler.
*/
static const char *find_my_pkglibexec_path(struct lightningd *ld,
const char *my_path TAKES)
{
const char *pkglibexecdir;
/*~`path_join` is declared in ccan/path/path.h as:
*
* char *path_join(const tal_t *ctx,
* const char *base TAKES, const char *a TAKES);
*
* So, as we promised with 'TAKES' in our own declaration, if the
* caller has called `take()` the `my_path` parameter, path_join()
* will free it. */
pkglibexecdir = path_join(NULL, my_path, BINTOPKGLIBEXECDIR);
/*~ The plugin dir is in ../libexec/c-lightning/plugins, which (unlike
* those given on the command line) does not need to exist. */
plugins_set_builtin_plugins_dir(ld->plugins,
path_join(tmpctx,
pkglibexecdir, "plugins"));
/*~ Sometimes take() can be more efficient, since the routine can
* manipulate the string in place. This is the case here. */
return path_simplify(ld, take(pkglibexecdir));
}
/* Determine the correct daemon dir. */
static const char *find_daemon_dir(struct lightningd *ld, const char *argv0)
{
const char *my_path = find_my_directory(ld, argv0);
/* If we're running in-tree, all the subdaemons are with lightningd. */
if (has_all_subdaemons(my_path)) {
/* In this case, look for built-in plugins in ../plugins */
plugins_set_builtin_plugins_dir(ld->plugins,
path_join(tmpctx,
my_path,
"../plugins"));
return my_path;
}
/* Otherwise we assume they're in the installed dir. */
return find_my_pkglibexec_path(ld, take(my_path));
}
/*~ We like to free everything on exit, so valgrind doesn't complain (valgrind
* is an awesome runtime memory usage detector for C and C++ programs). In
* some ways it would be neater not to do this, but it turns out some
* transient objects still need cleaning. */
static void free_all_channels(struct lightningd *ld)
{
struct peer *p;
struct peer_node_id_map_iter it;
/*~ tal supports *destructors* using `tal_add_destructor()`; the most
* common use is for an object to delete itself from a linked list
* when it's freed.
*
* As a result, freeing an object (which frees any tal objects
* allocated off it, and any allocated off them, etc) may cause
* callbacks; in this case, some objects freed here can cause database
* writes, which must be inside a transaction. */
db_begin_transaction(ld->wallet->db);
/* Now we free all the HTLCs */
free_htlcs(ld, NULL);
/*~ For every peer, we free every channel. On allocation the peer was
* given a destructor (`destroy_peer`) which removes itself from the
* hashtable.
*
* Deletion from a hashtable is allowed, but it does mean we could
* skip entries in iteration. Hence we repeat until empty!
*/
again:
for (p = peer_node_id_map_first(ld->peers, &it);
p;
p = peer_node_id_map_next(ld->peers, &it)) {
struct channel *c;
/*~ A peer can have multiple channels. */
while ((c = list_top(&p->channels, struct channel, list))
!= NULL) {
/* Removes itself from list as we free it */
tal_free(c);
}
/* A peer may have a channel in the process of opening. */
if (p->uncommitted_channel) {
struct uncommitted_channel *uc = p->uncommitted_channel;
/* Setting to NULL stops destroy_uncommitted_channel
* from trying to remove peer from db! */
p->uncommitted_channel = NULL;
tal_free(uc);
}
/* Removes itself from htable as we free it */
tal_free(p);
}
if (peer_node_id_map_first(ld->peers, &it))
goto again;
/*~ Commit the transaction. Note that the db is actually
* single-threaded, so commits never fail and we don't need
* spin-and-retry logic everywhere. */
db_commit_transaction(ld->wallet->db);
}
static void shutdown_global_subdaemons(struct lightningd *ld)
{
/* Let everyone shutdown cleanly. */
close(ld->hsm_fd);
/*~ The three "global" daemons, which we shutdown explicitly: we
* give them 10 seconds to exit gracefully before killing them. */
ld->connectd = subd_shutdown(ld->connectd, 10);
ld->gossip = subd_shutdown(ld->gossip, 10);
ld->hsm = subd_shutdown(ld->hsm, 10);
}
/*~ Our wallet logic needs to know what outputs we might be interested in. We
* use BIP32 (a.k.a. "HD wallet") to generate keys from a single seed, so we
* keep the maximum-ever-used key index in the db, and add them all to the
* filter here. */
static void init_txfilter(struct wallet *w,
const struct ext_key *bip32_base,
struct txfilter *filter)
{
/*~ This is defined in libwally, so we didn't have to reimplement */
struct ext_key ext;
/*~ Note the use of ccan/short_types u64 rather than uint64_t.
* Thank me later. */
u64 bip32_max_index;
bip32_max_index = db_get_intvar(w->db, "bip32_max_index", 0);
/*~ One of the C99 things I unequivocally approve: for-loop scope. */
for (u64 i = 0; i <= bip32_max_index + w->keyscan_gap; i++) {
if (bip32_key_from_parent(bip32_base, i, BIP32_FLAG_KEY_PUBLIC, &ext) != WALLY_OK) {
abort();
}
txfilter_add_derkey(filter, ext.pub_key);
}
}
/*~ The normal advice for daemons is to move into the root directory, so you
* don't prevent unmounting whatever filesystem you happen to start in.
*
* But we define every path relative to our (~/.lightning) data dir, so we
* make sure we stay there. The rest of this is taken from ccan/daemonize,
* which was based on W. Richard Stevens' advice in Programming in The Unix
* Environment.
*/
static void complete_daemonize(struct lightningd *ld)
{
int ok_status = 0;
/* Don't hold files open. */
close(STDIN_FILENO);
close(STDOUT_FILENO);
close(STDERR_FILENO);
/* Many routines write to stderr; that can cause chaos if used
* for something else, so set it here. */
if (open("/dev/null", O_WRONLY) != 0)
fatal("Could not open /dev/null: %s", strerror(errno));
if (dup2(0, STDERR_FILENO) != STDERR_FILENO)
fatal("Could not dup /dev/null for stderr: %s", strerror(errno));
close(0);
/* Session leader so ^C doesn't whack us. */
if (setsid() == (pid_t)-1)
fatal("Could not setsid: %s", strerror(errno));
/* Discard our parent's old-fashioned umask prejudices. */
ld->initial_umask = umask(0);
/* OK, parent, you can exit(0) now. */
write_all(ld->daemon_parent_fd, &ok_status, sizeof(ok_status));
close(ld->daemon_parent_fd);
}
/*~ It's pretty standard behaviour (especially for daemons) to create and
* file-lock a pidfile. This not only prevents accidentally running multiple
* daemons on the same database at once, but lets nosy sysadmins see what pid
* the currently-running daemon is supposed to be. */
static void pidfile_create(const struct lightningd *ld)
{
int pid_fd;
char *pid;
/* Create PID file: relative to .config dir. */
pid_fd = open(ld->pidfile, O_WRONLY|O_CREAT, 0640);
if (pid_fd < 0)
err(1, "Failed to open PID file");
/* Lock PID file, so future lockf will fail. */
if (lockf(pid_fd, F_TLOCK, 0) < 0)
/* Problem locking file */
err(EXITCODE_PIDFILE_LOCK, "lightningd already running? Error locking PID file");
/*~ As closing the file will remove the lock, we need to keep it open;
* the OS will close it implicitly when we exit for any reason. */
/*~ Note that tal_fmt() is what asprintf() dreams of being. */
pid = tal_fmt(tmpctx, "%d\n", getpid());
/*~ CCAN's write_all writes to a file descriptor, looping if necessary
* (which, on a file unlike a socket, is never, for historical UNIX
* reasons). It also isn't declared with GCC's warn_unused_result
* which write() is when FORTIFY_SOURCE is defined, so we're allowed
* to ignore the result without jumping through hoops. */
write_all(pid_fd, pid, strlen(pid));
}
/*~ ccan/io allows overriding the poll() function that is the very core
* of the event loop it runs for us. We override it so that we can do
* extra sanity checks, and it's also a good point to free the tmpctx. */
static int io_poll_lightningd(struct pollfd *fds, nfds_t nfds, int timeout)
{
/* These checks and freeing tmpctx are common to all daemons. */
return daemon_poll(fds, nfds, timeout);
}
/*~ Ever had one of those functions which doesn't quite fit anywhere? Me too.
* Implementing a generic notifier framework is overkill in a static codebase
* like this, and it's always better to have compile-time calls than runtime,
* as it makes the code more explicit. But pasting in direct calls is also an
* abstraction violation, so we use this middleman function. */
void notify_new_block(struct lightningd *ld, u32 block_height)
{
/* Inform our subcomponents individually. */
htlcs_notify_new_block(ld, block_height);
channel_notify_new_block(ld, block_height);
gossip_notify_new_block(ld, block_height);
waitblockheight_notify_new_block(ld, block_height);
}
static void on_sigint(int _ UNUSED)
{
static const char *msg = "lightningd: SIGINT caught, exiting.\n";
write_all(STDERR_FILENO, msg, strlen(msg));
_exit(1);
}
static void on_sigterm(int _ UNUSED)
{
static const char *msg = "lightningd: SIGTERM caught, exiting.\n";
write_all(STDERR_FILENO, msg, strlen(msg));
_exit(1);
}
/* Globals are terrible, but we all do it. */
static int sigchld_wfd;
static void on_sigchild(int _ UNUSED)
{
/*~ UNIX signals are async, which is usually terrible. The usual
* trick, which we use here, it to write a byte to a pipe, and
* then handle it in the main event loop.
*
* This can fail if we get flooded by signals but that's OK;
* we made it non-blocking, and the reader will loop until
* there are no more children. But glibc's overzealous use of
* __attribute__((warn_unused_result)) means we have to
* "catch" the return value. */
if (write(sigchld_wfd, "", 1) != 1) {
if (errno != EAGAIN && errno != EWOULDBLOCK) {
/* Should not call this in a signal handler, but we're
* already messed up! */
fatal("on_sigchild: write errno %s", strerror(errno));
}
}
}
/*~ We only need to handle SIGTERM and SIGINT for the case we are PID 1 of
* docker container since Linux makes special this PID and requires that
* some handler exist.
*
* We also want to catch SIGCHLD, so we can report on such children and
* avoid zombies. */
static int setup_sig_handlers(void)
{
struct sigaction sigint, sigterm, sigchild;
int fds[2];
memset(&sigint, 0, sizeof(struct sigaction));
memset(&sigterm, 0, sizeof(struct sigaction));
memset(&sigchild, 0, sizeof(struct sigaction));
sigint.sa_handler = on_sigint;
sigterm.sa_handler = on_sigterm;
sigchild.sa_handler = on_sigchild;
sigchild.sa_flags = SA_RESTART;
if (1 == getpid()) {
sigaction(SIGINT, &sigint, NULL);
sigaction(SIGTERM, &sigterm, NULL);
}
if (pipe(fds) != 0)
err(1, "creating sigchild pipe");
sigchld_wfd = fds[1];
if (fcntl(sigchld_wfd, F_SETFL,
fcntl(sigchld_wfd, F_GETFL)|O_NONBLOCK) != 0)
err(1, "setting sigchild pip nonblock");
sigaction(SIGCHLD, &sigchild, NULL);
return fds[0];
}
/*~ This removes the SIGCHLD handler, so we don't try to write
* to a broken pipe. */
static void remove_sigchild_handler(struct io_conn *sigchld_conn)
{
struct sigaction sigchild;
memset(&sigchild, 0, sizeof(struct sigaction));
sigchild.sa_handler = SIG_DFL;
sigaction(SIGCHLD, &sigchild, NULL);
io_close(sigchld_conn);
}
/*~ This is the routine which sets up the sigchild handling. We just
* reap them for now so they don't become zombies, but our subd
* handling calls waitpid() synchronously, so we can't simply do this
* in the signal handler or set SIGCHLD to be ignored, which has the
* same effect.
*
* We can usually ignore these because we keep pipes to our children,
* and use the closure of those to indicate termination.
*/
static struct io_plan *sigchld_rfd_in(struct io_conn *conn,
struct lightningd *ld)
{
/* We don't actually care what we read, so we stuff things here. */
static u8 ignorebuf;
static size_t len;
pid_t childpid;
int wstatus;
/* Reap the plugins, since we otherwise ignore them. */
while ((childpid = waitpid(-1, &wstatus, WNOHANG)) > 0) {
maybe_subd_child(ld, childpid, wstatus);
}
return io_read_partial(conn, &ignorebuf, 1, &len, sigchld_rfd_in, ld);
}
/*~ We actually keep more than one set of features, used in different
* contexts. common/features.c knows how each standard feature is
* presented, so we have it generate the set for each one at a time, and
* combine them.
*
* This is inefficient, but the primitives are useful for adding single
* features later, or adding them when supplied by plugins. */
static struct feature_set *default_features(const tal_t *ctx)
{
struct feature_set *ret = NULL;
static const u32 features[] = {
OPTIONAL_FEATURE(OPT_DATA_LOSS_PROTECT),
OPTIONAL_FEATURE(OPT_UPFRONT_SHUTDOWN_SCRIPT),
OPTIONAL_FEATURE(OPT_GOSSIP_QUERIES),
COMPULSORY_FEATURE(OPT_VAR_ONION),
COMPULSORY_FEATURE(OPT_PAYMENT_SECRET),
OPTIONAL_FEATURE(OPT_BASIC_MPP),
OPTIONAL_FEATURE(OPT_GOSSIP_QUERIES_EX),
OPTIONAL_FEATURE(OPT_STATIC_REMOTEKEY),
OPTIONAL_FEATURE(OPT_SHUTDOWN_ANYSEGWIT),
OPTIONAL_FEATURE(OPT_PAYMENT_METADATA),
OPTIONAL_FEATURE(OPT_SCID_ALIAS),
OPTIONAL_FEATURE(OPT_ZEROCONF),
OPTIONAL_FEATURE(OPT_CHANNEL_TYPE),
OPTIONAL_FEATURE(OPT_ROUTE_BLINDING),
};
for (size_t i = 0; i < ARRAY_SIZE(features); i++) {
struct feature_set *f
= feature_set_for_feature(NULL, features[i]);
if (!ret)
ret = tal_steal(ctx, f);
else
feature_set_or(ret, take(f));
}
return ret;
}
/*~ We need this function style to hand to ecdh_hsmd_setup, but it's just a thin
* wrapper around fatal() */
static void hsm_ecdh_failed(enum status_failreason fail,
const char *fmt, ...)
{
fatal("hsm failure: %s", fmt);
}
/*~ This signals to the mainloop that some part wants to cleanly exit now. */
void lightningd_exit(struct lightningd *ld, int exit_code)
{
ld->exit_code = tal(ld, int);
*ld->exit_code = exit_code;
log_debug(ld->log, "io_break: %s", __func__);
io_break(ld);
}
struct recover_payload {
const char *codex32secret;
};
static bool
recover_hook_deserialize(struct recover_payload *payload,
const char *buffer, const jsmntok_t *toks)
{
const jsmntok_t *t_res;
if (!toks || !buffer)
return true;
t_res = json_get_member(buffer, toks, "result");
/* fail */
if (!t_res || !json_tok_streq(buffer, t_res, "continue"))
fatal("Plugin returned an invalid response to the "
"recover hook: %s", buffer);
/* call next hook */
return true;
}
static void recover_hook_final(struct recover_payload *payload STEALS)
{
tal_steal(tmpctx, payload);
}
static void recover_hook_serialize(struct recover_payload *payload,
struct json_stream *stream,
struct plugin *plugin)
{
json_add_string(stream, "codex32", payload->codex32secret);
}
REGISTER_PLUGIN_HOOK(recover,
recover_hook_deserialize,
recover_hook_final,
recover_hook_serialize,
struct recover_payload *);
int main(int argc, char *argv[])
{
struct lightningd *ld;
u32 min_blockheight, max_blockheight;
int connectd_gossipd_fd;
int stop_fd;
struct timers *timers;
const char *stop_response;
struct htlc_in_map *unconnected_htlcs_in;
int sigchld_rfd;
struct io_conn *sigchld_conn = NULL;
int exit_code = 0;
char **orig_argv;
bool try_reexec;
trace_span_start("lightningd/startup", argv);
/*~ We fork out new processes very very often; every channel gets its
* own process, for example, and we have `hsmd` and `gossipd` and
* the plugins as well.
* Now, we also keep around several file descriptors (`fd`s), including
* file descriptors to communicate with `hsmd` which is a privileged
* process with access to private keys and is therefore very sensitive.
* Thus, we need to close all file descriptors other than what the
* forked-out new process should have ASAP.
*
* We do this by using the `ccan/closefrom` module, which implements
* an emulation for the `closefrom` syscall on BSD and Solaris.
* This emulation tries to use the fastest facility available on the
* system (`close_range` syscall on Linux 5.9+, snooping through
* `/proc/$PID/fd` on many OSs (but requires procps to be mounted),
* the actual `closefrom` call if available, etc.).
* As a fallback if none of those are available on the system, however,
* it just iterates over the theoretical range of possible file
* descriptors.
*
* On some systems, that theoretical range can be very high, up to
* `INT_MAX` in the worst case.
* If the `closefrom` emulation has to fall back to this loop, it
* can be very slow; fortunately, the emulation will also inform