-
Notifications
You must be signed in to change notification settings - Fork 0
/
Container.lua
100 lines (87 loc) · 2.32 KB
/
Container.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
-- This is code common to container modules, which are collections of
-- smaller constituent modules like Parallel, Sequential, etc.
local Container, parent = torch.class('nn.Container', 'nn.Module')
function Container:__init(...)
parent.__init(self, ...)
self.modules = {}
end
function Container:add(module)
table.insert(self.modules, module)
return self
end
function Container:get(index)
return self.modules[index]
end
function Container:size()
return #self.modules
end
function Container:applyToModules(func)
for _, module in ipairs(self.modules) do
func(module)
end
end
function Container:zeroGradParameters()
self:applyToModules(function(module) module:zeroGradParameters() end)
end
function Container:updateParameters(learningRate)
self:applyToModules(function(module) module:updateParameters(learningRate) end)
end
function Container:training()
self:applyToModules(function(module) module:training() end)
parent.training(self)
end
function Container:evaluate()
self:applyToModules(function(module) module:evaluate() end)
parent.evaluate(self)
end
function Container:share(mlp, ...)
for i=1,#self.modules do
self.modules[i]:share(mlp.modules[i], ...);
end
end
function Container:reset(stdv)
self:applyToModules(function(module) module:reset(stdv) end)
end
function Container:parameters()
local function tinsert(to, from)
if type(from) == 'table' then
for i=1,#from do
tinsert(to,from[i])
end
else
table.insert(to,from)
end
end
local w = {}
local gw = {}
for i=1,#self.modules do
local mw,mgw = self.modules[i]:parameters()
if mw then
tinsert(w,mw)
tinsert(gw,mgw)
end
end
return w,gw
end
function Container:clearState()
-- don't call set because it might reset referenced tensors
local function clear(f)
if self[f] then
if torch.isTensor(self[f]) then
self[f] = self[f].new()
elseif type(self[f]) == 'table' then
self[f] = {}
else
self[f] = nil
end
end
end
clear('output')
clear('gradInput')
if self.modules then
for i,module in pairs(self.modules) do
module:clearState()
end
end
return self
end