forked from bao-qian/lightsabers
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathencoding.scm
87 lines (70 loc) · 2.51 KB
/
encoding.scm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
;; booleans and pairs
(define ltrue `(lambda (x) (lambda (y) x)))
(define lfalse `(lambda (x) (lambda (y) y)))
(define lpair `(lambda (x) (lambda (y) (lambda (p) ((p x) y)))))
(define lcar `(lambda (p) (p ,ltrue)))
(define lcdr `(lambda (p) (p ,lfalse)))
;; numbers and operations
(define decode-number (lambda (n) ((n add1) 0)))
(define lzero `(lambda (f) (lambda (x) x)))
(define lone `(lambda (f) (lambda (x) (f x))))
(define ltwo `(lambda (f) (lambda (x) (f (f x)))))
(define lthree `(lambda (f) (lambda (x) (f (f (f x))))))
(define lfour `(lambda (f) (lambda (x) (f (f (f (f x)))))))
(define lfive `(lambda (f) (lambda (x) (f (f (f (f (f x))))))))
(define l6 `(lambda (f) (lambda (x) (f (f (f (f (f (f x)))))))))
(define l7 `(lambda (f) (lambda (x) (f (f (f (f (f (f (f x))))))))))
(define lzero? `(lambda (n) ((n (lambda (x) ,lfalse)) ,ltrue)))
(define lsucc `(lambda (n) (lambda (f) (lambda (x) (f ((n f) x))))))
; Daniel Smith's pred
(define lpred
'(lambda (n)
(lambda (w)
(lambda (z)
(((n (lambda (l) (lambda (h) (h (l w))))) (lambda (d) z))
(lambda (x) x))))))
(define lpred `(lambda (n)
(,lcar ((n (lambda (p)
((,lpair (,lcdr p)) (,lsucc (,lcdr p)))))
((,lpair ,lzero) ,lzero)))))
(define lplus `(lambda (m) (lambda (n) (lambda (f) (lambda (x) ((m f) ((n f) x)))))))
(define lsub `(lambda (m) (lambda (n) ((n ,lpred) m))))
(define ltimes `(lambda (m) (lambda (n) (lambda (f) (lambda (x) ((m (n f)) x))))))
(define lpow `(lambda (m) (lambda (n) (lambda (f) (lambda (x) (((m n) f) x))))))
;; call-by-value Y combinator
(define Y
`(lambda (f)
((lambda (u) (u u))
(lambda (x) (f (lambda (t) ((x x) t)))))))
;; version 1 (using poorman's Y)
(define !-half
`(lambda (!)
(lambda (n)
((((,lzero? n)
(lambda (t) ,lone))
(lambda (t) ((,ltimes n) ((! !) (,lpred n)))))
(lambda (v) v)))))
(define ! `(,!-half ,!-half))
(define !-5 `(,! ,lfive))
;; version 2 (using CBV Y)
(define !-gen
`(lambda (!)
(lambda (n)
((((,lzero? n)
(lambda (t) ,lone))
(lambda (t) ((,ltimes n) (! (,lpred n)))))
(lambda (v) v)))))
(define ! `(,Y ,!-gen))
;; version 3 (CBN)
;; call-by-name Y
(define Y-n
`(lambda (f)
((lambda (x) (f (x x)))
(lambda (x) (f (x x))))))
(define !-gen-n
`(lambda (!)
(lambda (n)
(((,lzero? n) ,lone) ((,ltimes n) (! (,lpred n)))))))
(define !-n `(,Y-n ,!-gen-n))
;; example use:
;; (decode-number (eval `(,! ,lfive)))