forked from FudanDISC/DISC-LawLLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
web_demo.py
65 lines (50 loc) · 2.15 KB
/
web_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import json
import torch
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation.utils import GenerationConfig
st.set_page_config(page_title="FudanDISC-LawLLM")
st.title("FudanDISC-LawLLM🤖️")
@st.cache_resource
def init_model():
model_path = "ShengbinYue/DISC-LawLLM"
model = AutoModelForCausalLM.from_pretrained(
model_path, torch_dtype=torch.float16, device_map="auto", trust_remote_code=True
)
model.generation_config = GenerationConfig.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(
model_path, use_fast=False, trust_remote_code=True
)
return model, tokenizer
def clear_chat_history():
del st.session_state.messages
def init_chat_history():
with st.chat_message("assistant", avatar="🤖"):
st.markdown("您好,我是复旦 DISC-LawLLM,很高兴为您服务💖")
if "messages" in st.session_state:
for message in st.session_state.messages:
avatar = "🙋♂️" if message["role"] == "user" else "🤖"
with st.chat_message(message["role"], avatar=avatar):
st.markdown(message["content"])
else:
st.session_state.messages = []
return st.session_state.messages
def main():
model, tokenizer = init_model()
messages = init_chat_history()
if prompt := st.chat_input("Shift + Enter 换行,Enter 发送"):
with st.chat_message("user", avatar="🙋♂️"):
st.markdown(prompt)
messages.append({"role": "user", "content": prompt})
print(f"[user] {prompt}", flush=True)
with st.chat_message("assistant", avatar="🤖"):
placeholder = st.empty()
for response in model.chat(tokenizer, messages, stream=True):
placeholder.markdown(response)
if torch.backends.mps.is_available():
torch.mps.empty_cache()
messages.append({"role": "assistant", "content": response})
print(json.dumps(messages, ensure_ascii=False), flush=True)
st.button("清空对话", on_click=clear_chat_history)
if __name__ == "__main__":
main()