@inproceedings{SunXLW19,
title={Deep High-Resolution Representation Learning for Human Pose Estimation},
author={Ke Sun and Bin Xiao and Dong Liu and Jingdong Wang},
booktitle={CVPR},
year={2019}
}
@article{SunZJCXLMWLW19,
title={High-Resolution Representations for Labeling Pixels and Regions},
author={Ke Sun and Yang Zhao and Borui Jiang and Tianheng Cheng and Bin Xiao
and Dong Liu and Yadong Mu and Xinggang Wang and Wenyu Liu and Jingdong Wang},
journal = {CoRR},
volume = {abs/1904.04514},
year={2019}
}
Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
---|---|---|---|---|---|---|---|
HRNetV2p-W18 | pytorch | 1x | 6.6 | 13.4 | 36.9 | config | model | log |
HRNetV2p-W18 | pytorch | 2x | 6.6 | 38.9 | config | model | log | |
HRNetV2p-W32 | pytorch | 1x | 9.0 | 12.4 | 40.2 | config | model | log |
HRNetV2p-W32 | pytorch | 2x | 9.0 | 41.4 | config | model | log | |
HRNetV2p-W40 | pytorch | 1x | 10.4 | 10.5 | 41.2 | config | model | log |
HRNetV2p-W40 | pytorch | 2x | 10.4 | 42.1 | config | model | log |
Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
---|---|---|---|---|---|---|---|---|
HRNetV2p-W18 | pytorch | 1x | 7.0 | 11.7 | 37.7 | 34.2 | config | model | log |
HRNetV2p-W18 | pytorch | 2x | 7.0 | - | 39.8 | 36.0 | config | model | log |
HRNetV2p-W32 | pytorch | 1x | 9.4 | 11.3 | 41.2 | 37.1 | config | model | log |
HRNetV2p-W32 | pytorch | 2x | 9.4 | - | 42.5 | 37.8 | config | model | log |
HRNetV2p-W40 | pytorch | 1x | 10.9 | 42.1 | 37.5 | config | model | log | |
HRNetV2p-W40 | pytorch | 2x | 10.9 | 42.8 | 38.2 | config | model | log |
Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
---|---|---|---|---|---|---|---|
HRNetV2p-W18 | pytorch | 20e | 7.0 | 11.0 | 41.2 | config | model | log |
HRNetV2p-W32 | pytorch | 20e | 9.4 | 11.0 | 43.3 | config | model | log |
HRNetV2p-W40 | pytorch | 20e | 10.8 | 43.8 | config | model | log |
Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
---|---|---|---|---|---|---|---|---|
HRNetV2p-W18 | pytorch | 20e | 8.5 | 8.5 | 41.6 | 36.4 | config | model | log |
HRNetV2p-W32 | pytorch | 20e | 8.3 | 44.3 | 38.6 | config | model | log | |
HRNetV2p-W40 | pytorch | 20e | 12.5 | 45.1 | 39.3 | config | model | log |
Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
---|---|---|---|---|---|---|---|---|
HRNetV2p-W18 | pytorch | 20e | 10.8 | 4.7 | 42.8 | 37.9 | config | model | log |
HRNetV2p-W32 | pytorch | 20e | 13.1 | 4.9 | 45.4 | 39.9 | config | model | log |
HRNetV2p-W40 | pytorch | 20e | 14.6 | 46.4 | 40.8 | config | model | log |
Backbone | Style | GN | MS train | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
---|---|---|---|---|---|---|---|---|---|
HRNetV2p-W18 | pytorch | Y | N | 1x | 13.0 | 12.9 | 35.3 | config | model | log |
HRNetV2p-W18 | pytorch | Y | N | 2x | 13.0 | - | 38.2 | config | model | log |
HRNetV2p-W32 | pytorch | Y | N | 1x | 17.5 | 12.9 | 39.5 | config | model | log |
HRNetV2p-W32 | pytorch | Y | N | 2x | 17.5 | - | 40.8 | config | model | log |
HRNetV2p-W18 | pytorch | Y | Y | 2x | 13.0 | 12.9 | 38.3 | config | model | log |
HRNetV2p-W32 | pytorch | Y | Y | 2x | 17.5 | 12.4 | 41.9 | config | model | log |
HRNetV2p-W48 | pytorch | Y | Y | 2x | 20.3 | 10.8 | 42.7 | config | model | log |
Note:
- The
28e
schedule in HTC indicates decreasing the lr at 24 and 27 epochs, with a total of 28 epochs. - HRNetV2 ImageNet pretrained models are in HRNets for Image Classification.