forked from MCG-NJU/AdaMixer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_module.py
96 lines (90 loc) · 3.37 KB
/
test_module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import torch
from mmdet.models.dense_heads import query_generator
from mmdet.models.roi_heads.bbox_heads.adaptive_mixing_operator import AdaptiveMixing
from mmdet.models.dense_heads.query_generator import InitialQueryGenerator
from mmdet.models.detectors import QueryBased
num_stages = 6
num_proposals = 100
QUERY_DIM = 256
FEAT_DIM = 256
FF_DIM = 2048
# P_in for spatial mixing in the paper.
in_points_list = [32, ] * num_stages
# P_out for spatial mixing in the paper. Also named as `out_points` in this codebase.
out_patterns_list = [128, ] * num_stages
# G for the mixer grouping in the paper. Also named as n_head in this codebase.
n_group_list = [4, ] * num_stages
detector = QueryBased(
pretrained='torchvision://resnet50',
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
style='pytorch'),
neck=dict(
type='ChannelMapping',
in_channels=[256, 512, 1024, 2048],
out_channels=FEAT_DIM,
start_level=0,
add_extra_convs='on_output',
num_outs=4),
rpn_head=dict(
type='InitialQueryGenerator',
num_query=num_proposals,
content_dim=QUERY_DIM),
roi_head=dict(
type='AdaMixerDecoder',
num_stages=num_stages,
stage_loss_weights=[1] * num_stages,
content_dim=QUERY_DIM,
bbox_head=[
dict(
type='AdaMixerDecoderStage',
num_classes=80,
num_ffn_fcs=2,
num_heads=8,
num_cls_fcs=1,
num_reg_fcs=1,
feedforward_channels=FF_DIM,
content_dim=QUERY_DIM,
feat_channels=FEAT_DIM,
dropout=0.0,
in_points=in_points_list[stage_idx],
out_points=out_patterns_list[stage_idx],
n_groups=n_group_list[stage_idx],
ffn_act_cfg=dict(type='ReLU', inplace=True),
loss_bbox=dict(type='L1Loss', loss_weight=5.0),
loss_iou=dict(type='GIoULoss', loss_weight=2.0),
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=2.0),
# NOTE: The following argument is a placeholder to hack the code. No real effects for decoding or updating bounding boxes.
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
clip_border=False,
target_means=[0., 0., 0., 0.],
target_stds=[0.5, 0.5, 1., 1.])) for stage_idx in range(num_stages)
]),
# training and testing settings
train_cfg=dict(
rpn=None,
rcnn=[
dict(
assigner=dict(
type='HungarianAssigner',
cls_cost=dict(type='FocalLossCost', weight=2.0),
reg_cost=dict(type='BBoxL1Cost', weight=5.0),
iou_cost=dict(type='IoUCost', iou_mode='giou',
weight=2.0)),
sampler=dict(type='PseudoSampler'),
pos_weight=1) for _ in range(num_stages)
]),
test_cfg=dict(rpn=None, rcnn=dict(max_per_img=num_proposals))
)