-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpost_avg.py
132 lines (125 loc) · 4.57 KB
/
post_avg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import pickle
import os
import glob
import numpy as np
import torch
from collections import defaultdict
print(os.listdir("/ossfs/workspace/datasets/fungi_tta"))
root = "/ossfs/workspace/datasets/fungi_tta/"
dirs = os.listdir(root)
# average results from different model
img_nums = 118676
print(dirs)
result_final = dict()
result_final_count = dict()
print(len(dirs))
for d in dirs:
print(d)
results = []
result_dir = root + d
result_paths = glob.glob(result_dir + "/*.pkl")
for p in result_paths:
with open(p, "rb") as f:
results.append(pickle.load(f))
result = results[0]
for i in range(1, len(results)):
result.update(results[i])
del results
# to numpy
for k, v in result.items():
v = np.array(v)
if k not in result_final:
result_final[k] = v
else:
result_final[k] += v
del result
print(len(list(result_final.keys())))
for k, v in result_final.items():
result_final[k] = v / len(dirs)
submit_result = defaultdict(list)
for k, v in result_final.items():
k = k.split("-")[1].split(".")[0]
submit_result[k].append(v.tolist())
with open("/ossfs/workspace/datasets/" + "avg.pkl", "wb") as f:
pickle.dump(submit_result, f)
# post process on ensamble results
less_cls = [18, 21, 47, 110, 135, 248, 260, 393, 485, 500, 521, 530, 624, 656, 668, 690, 760, 825, 918, 1006, 1010, 1041, 1055, 1065, 1087, 1187, 1304, 1372, 1376, 1429, 1489, 1510, 1545, 1580, 1581, 1599, 1601]
with open("/ossfs/workspace/datasets/" + "avg.pkl", "rb") as f:
result_temp = pickle.load(f)
thresh = 9.8
max_result = dict()
filter_num = 0
diff_num = 0
less_count = 1
for k, v in result_temp.items():
scores = v
scores = np.vstack(scores)
score = np.mean(scores, 0)
torch_score = torch.tensor(score)
max_score_torch, max_idx_torch = torch_score.topk(3)
max_score_top2 = max_score_torch[1]
max_idx_top2 = max_idx_torch[1]
max_score_top3 = max_score_torch[2]
max_idx_top3 = max_idx_torch[2]
score_v2 = np.max(scores, 0)
max_score = np.max(score)
max_idx = np.argmax(score)
max_score_v2 = np.max(score_v2)
max_idx_v2 = np.argmax(score_v2)
if max_idx_v2 in less_cls and max_idx not in less_cls and max_score_v2 > thresh-0.7:
max_score = thresh + 1
max_idx = max_idx_v2
less_count += 1
elif max_idx in less_cls and max_score > thresh - 0.7:
max_score = thresh + 1.2
less_count += 1
elif max_idx_top2 in less_cls and max_idx not in less_cls and max_score_top2 > thresh - 0.7 and (max_score - max_score_top2) < 1.2:
print(f"less cls={max_idx_top2}, score={max_score_top2}, max_score={max_score}")
less_count += 1
max_score = thresh + 1
max_idx = max_idx_top2
elif max_idx_top3 in less_cls and max_idx not in less_cls and max_score_top3 > thresh - 0.7 and (max_score - max_score_top3) < 1.2:
print(f"so less cls={max_idx_top3}, score={max_score_top3}, max_score={max_score}")
less_count += 1
max_score = thresh + 1
max_idx = max_idx_top3
# if max_score <= thresh and max_idx != max_idx_v2 and max_score_v2 > 14:
# print(k, max_idx, max_idx_v2, max_score, max_score_v2)
# print(score[max_idx_v2], max(scores[:, max_idx]))
# diff_num += 1
if max_score <= thresh and len(scores) > 1 and max_score_v2 > 15:
print(k, max_idx_v2, max_score_v2)
filter_num += 1
# max_score = max(scores[:, max_idx])
max_score = max_score_v2
max_idx = max_idx_v2
max_result[k] = (max_score, max_idx)
print(f"filter number {filter_num}")
print(f"less count top2 = {less_count}")
print(f"max mean diff num {diff_num}")
test_scores = []
for res in max_result.values():
test_scores.append(res[0])
print(len(test_scores))
print(max(test_scores))
print(min(test_scores))
print(len(dirs))
other_num = 0
other_obid = set()
cls2other_count = defaultdict(int)
with open(os.path.join("/ossfs/workspace/datasets/", "submission.csv"), "w") as f:
print("build submission")
f.write("ObservationId,ClassId\n")
for k, v in max_result.items():
max_score, max_idx = v
if max_score > thresh or (max_score > thresh - eta and max_idx in less_cls):
f.write(f"{k},{max_idx}\n")
# if (max_idx in less_cls and max_score > thresh):
# f.write(f"{k},{max_idx}\n")
# print("less {max_idx}, score={max_score}")
else:
other_num += 1
cls2other_count[max_idx] += 1
f.write(f"{k},{-1}\n")
other_obid.add(k)
print(f"other number is {other_num}")