forked from jobovy/extreme-deconvolution
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfit_tf.pro
284 lines (265 loc) · 9.4 KB
/
fit_tf.pro
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
;+
; NAME:
; fit_TF
; PURPOSE:
; fit the Tully-Fisher relation from HST cepheids using using 1
; Gaussian mixture
; CALLING SEQUENCE:
; INPUT:
; plotfilename - filename for plot
; texfilename - filename for results of fit
; OUTPUT:
; REVISION HISTORY:
; 2009-04-06 - Written Bovy (NYU)
;-
PRO FIT_TF, plotfilename=plotfilename, texfilename=texfilename
IF ~keyword_set(plotfilename) THEN plotfilename='TF.ps'
IF ~keyword_set(texfilename) THEN texfilename='TF.tex'
tol= 1D-5
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;; READ AND SET UP THE DATA
;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;Read the data
missing_value= 10000000.0
nfield= 19L
; most data types are double
fieldtypes= lonarr(nfield)+5
; some are long
fieldtypes[[15,16,17,18]]= 3
; some are string
fieldtypes[[0]]= 7
; give dumb names
fieldnames= 'TF'+string(indgen(nfield),format='(I2.2)')
template= {version:1.0, datastart: 0, $
delimiter: '|', missingvalue: missing_value, commentsymbol: '#', $
fieldcount: nfield, fieldtypes: fieldtypes, $
fieldnames: fieldnames, $
fieldlocations: lonarr(nfield), fieldgroups: lindgen(nfield)}
tfdata= read_ascii('TF.dat',num_records=nline,template=template)
print, 'found '+strtrim(string(n_elements(tfdata.tf01)),2)+$
' records'
;;Create the data structure
datastruct={TF, $
name :' ' , $ ; Name of the galaxy
mags : dblarr(5), $ ; magnitudes in different bands [B,V,R,I,H]
mags_err : dblarr(5), $ ; errors in magnitudes
W20 : 0D , $ ; log of W (20%)
W20_err : 0D , $ ; error in W20
W50 : 0D , $ ; log of W (50%)
W50_err : 0D , $ ; error in W50
incI : 0L , $ ; inclination
incI_err : 0L , $ ; error iI
inc : 0L , $ ; inclination
inc_err : 0L $ ; error in i
}
tf= replicate(datastruct,n_elements(tfdata.tf01))
;;load the data in the structure
tf.name= tfdata.tf00
tf.mags[0]= tfdata.tf01
tf.mags[1]= tfdata.tf03
tf.mags[2]= tfdata.tf05
tf.mags[3]= tfdata.tf07
tf.mags[4]= tfdata.tf09
tf.mags_err[0]= tfdata.tf02
tf.mags_err[1]= tfdata.tf04
tf.mags_err[2]= tfdata.tf06
tf.mags_err[3]= tfdata.tf08
tf.mags_err[4]= tfdata.tf10
tf.W20= tfdata.tf11
tf.W20_err= tfdata.tf12
tf.W50= tfdata.tf13
tf.W50_err= tfdata.tf14
tf.incI= tfdata.tf15
tf.incI_err= tfdata.tf16
tf.inc= tfdata.tf17
tf.inc_err= tfdata.tf18
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;; MAIN FIT OF TF RELATION
;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
slopes= dblarr(5)
slopes_err= dblarr(5)
intercepts= dblarr(5)
intercepts_err= dblarr(5)
FOR ii=0L, 4 DO BEGIN
;;Set-up the various arrays
;;First check whether any magnitudes are missing
indx= where(tf.mags[ii] NE missing_value)
ndata= n_elements(indx)
ydata= dblarr(2,ndata)
ycovar= dblarr(2,2,ndata)
projection= dblarr(2,2,ndata)
amp= dblarr(1)+1.
xmean= dblarr(2,1)
xcovar= dblarr(2,2,1)
ydata[0,0:ndata-1]= tf[indx].W20
ydata[1,0:ndata-1]= tf[indx].mags[ii]
ycovar[0,0,0:ndata-1]= (tf[indx].W20_err)^2.
ycovar[1,1,0:ndata-1]= (tf[indx].mags_err[ii])^2.
FOR jj=0L, ndata-1 DO BEGIN
projection[0,0,jj]= 1.
projection[1,1,jj]= 1.
ENDFOR
xcovar[0,0,0]= (max(ydata[0,0:ndata-1])-min(ydata[0,0:ndata-1]))^2.
xcovar[1,1,0]= (max(ydata[1,0:ndata-1])-min(ydata[1,0:ndata-1]))^2.
;;Run proj_gauss_mixtures
projected_gauss_mixtures_c, 1, ydata, ycovar, $
amp, xmean, xcovar, tol=tol, /quiet, projection=projection
;;Slope and zero point
eigenvals= EIGENQL(xcovar,eigenvectors=eigenvectors)
slopes[ii]= eigenvectors[1,0]/eigenvectors[0,0]
intercepts[ii]= 2.5*slopes[ii]-slopes[ii]*xmean[0]+xmean[1]
;;Jackknife the values of the slope and intercept
jack_slopes= dblarr(ndata)
jack_int= dblarr(ndata)
FOR jj= 0L, ndata-1 DO BEGIN
;;Create new sample by leaving one datapoint out
jackindx= leave_one_out(indx,jj)
jack_ydata= dblarr(2,ndata-1)
jack_ycovar= dblarr(2,2,ndata-1)
jack_projection= dblarr(2,2,ndata-1)
amp= dblarr(1)+1.
xmean= dblarr(2,1)
xcovar= dblarr(2,2,1)
jack_ydata[0,0:ndata-2]= tf[jackindx].W20
jack_ydata[1,0:ndata-2]= tf[jackindx].mags[ii]
jack_ycovar[0,0,0:ndata-2]= (tf[jackindx].W20_err)^2.
jack_ycovar[1,1,0:ndata-2]= (tf[jackindx].mags_err[ii])^2.
FOR kk=0L, ndata-2 DO BEGIN
jack_projection[0,0,kk]= 1.
jack_projection[1,1,kk]= 1.
ENDFOR
xcovar[0,0,0]= (max(ydata[0,0:ndata-2])-min(ydata[0,0:ndata-2]))^2.
xcovar[1,1,0]= (max(ydata[1,0:ndata-2])-min(ydata[1,0:ndata-2]))^2.
;;Run proj_gauss_mixtures
projected_gauss_mixtures_c, 1, jack_ydata, jack_ycovar, $
amp, xmean, xcovar, tol=tol, /quiet, projection=jack_projection
;;Slope and zero point
eigenvals= EIGENQL(xcovar,eigenvectors=eigenvectors)
jack_slopes[jj]= eigenvectors[1,0]/eigenvectors[0,0]
jack_int[jj]= 2.5*jack_slopes[jj]-jack_slopes[jj]*xmean[0]+xmean[1]
ENDFOR
squared_err= (ndata-1.)^2./double(ndata)*VARIANCE(jack_slopes,/double)
slopes_err[ii]= sqrt(squared_err)
squared_err= (ndata-1.)^2./double(ndata)*VARIANCE(jack_int,/double)
intercepts_err[ii]= sqrt(squared_err)
ENDFOR
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;; WRITE THE RESULTS TO A FILE
;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
bandnames= ['B_T^c','V_T^c','R^c_T','I^c_T','H^c_{-0.5}']
xname='\log_{10} W_{20}^c'
OPENW, wlun, texfilename, /GET_LUN
PRINTF, wlun, '\begin{align}'
FOR ii=0L, 3 DO BEGIN
PRINTF, wlun, bandnames[ii]+' &= -('+$
strtrim(string(abs(slopes[ii]),format='(F4.2)'),2)+$
' \pm '+strtrim(string(abs(slopes_err[ii]),format='(F4.2)'),2)+')\,( '+$
xname+' - 2.5 ) - ( '+$
strtrim(string(abs(intercepts[ii]),format='(F5.2)'),2)+$
' \pm '+strtrim(string(abs(intercepts_err[ii]),format='(F4.2)'),2)+$
') \\'
ENDFOR
ii=4
PRINTF, wlun, bandnames[ii]+' &= -('+$
strtrim(string(abs(slopes[ii]),format='(F5.2)'),2)+$
' \pm '+strtrim(string(abs(slopes_err[ii]),format='(F4.2)'),2)+')\,( '+$
xname+' - 2.5 ) - ( '+$
strtrim(string(abs(intercepts[ii]),format='(F5.2)'),2)+$
' \pm '+strtrim(string(abs(intercepts_err[ii]),format='(F4.2)'),2)+$
') '
PRINTF, wlun, '\end{align}'
FREE_LUN, wlun
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;; PLOT THE RESULT
;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;Plot everything
bands=['B','V','R','I','H']
xrange=[2.25,2.85]
yranges= dblarr(2,5)
yranges[0:1,0]=[-17.5,-23]
yranges[0:1,1]=[-18,-23.5]
yranges[0:1,2]=[-18.3,-23.75]
yranges[0:1,3]=[-18.75,-24.22]
yranges[0:1,4]=[-19.55,-25]
xtitle='log!d10!n W (20%)'
; setup postscript file
if(NOT keyword_set(axis_char_scale)) then axis_char_scale= 1.75
if(NOT keyword_set(tiny)) then tiny=1.d-4
pold=!P
xold=!X
yold=!Y
bangp=!P
bangx=!X
bangy=!Y
!P.FONT= -1
set_plot, "PS"
!P.BACKGROUND= 16777215
!P.COLOR= 0
if(NOT keyword_set(xsize)) then xsize= 3.375*2.
if(NOT keyword_set(ysize)) then ysize= 6.
device, file=plotfilename,/inches,xsize=xsize,ysize=ysize, $
xoffset=(8.5-xsize)/2.0,yoffset=(11.0-ysize)/2.0,/color, $
bits_per_pixel=64
!P.THICK= 1.0
!P.CHARTHICK= !P.THICK & !X.THICK= !P.THICK & !Y.THICK= !P.THICK
!P.CHARSIZE= 0.5
!P.PSYM= 0
!P.LINESTYLE= 0
!P.TITLE= ''
!X.STYLE= 1
!X.CHARSIZE= axis_char_scale
!X.MARGIN= [1,1]*0.5
!X.OMARGIN= [7,7]*axis_char_scale
!X.RANGE= 0
!X.TICKS= 0
!Y.STYLE= 1
!Y.CHARSIZE= !X.CHARSIZE
!Y.MARGIN= 0.6*!X.MARGIN
!Y.OMARGIN= 0.6*!X.OMARGIN
!Y.RANGE= 0
!Y.TICKS= !X.TICKS
!P.MULTI= [1,1,1]
xyouts, 0,0,'!6'
colorname= ['red','green','blue','magenta','cyan','dark yellow', $
'purple','light green','orange','navy','light magenta', $
'yellow green']
ncolor= n_elements(colorname)
loadct,0
;;plotting symbol
phi=findgen(32)*(!PI*2/32.)
phi = [ phi, phi(0) ]
usersym, cos(phi), sin(phi), /fill
xpos_label= 2.35
ypos_label_rel= (yranges[0,0]+22.4)/(yranges[0,0]-yranges[1,0])
positions= dblarr(4,5)
positions[0:3,0]= [0.08,0.55,0.306,0.9]
positions[0:3,1]= [0.386,0.55,0.616,0.9]
positions[0:3,2]= [0.696,0.55,0.924,0.9]
positions[0:3,3]= [0.234,0.1,0.46,0.45]
positions[0:3,4]= [0.54,0.1,0.76,0.45]
FOR ii=0L, 4 DO BEGIN
xline= [xrange[0],xrange[1]]
yline= [slopes[ii]*(xline[0]-2.5)+intercepts[ii],slopes[ii]*(xline[1]-2.5)+intercepts[ii]]
ploterror, tf.W20, tf.mags[ii], tf.W20_err, tf.mags_err[ii], psym=8, yrange=yranges[0:1,ii], $
xrange=xrange, xtitle=xtitle, position=positions[0:3,ii], symsize=0.5, /NOERASE
oplot, xline, yline, psym=-3
ypos_label=yranges[0,ii]+ypos_label_rel*(yranges[1,ii]-yranges[0,ii])
IF Float(!Version.Release) GE 8. THEN hasLegend= 1 ELSE hasLegend= 0
CATCH, Error_status
IF Error_status NE 0 THEN BEGIN
print, "Skipping legend because legend function not found"
hasLegend= 1
CATCH, /CANCEL
ENDIF
IF hasLegend EQ 0 THEN legend, [bands[ii]],pos=[xpos_label,ypos_label], box=0, charsize=1.5*!P.charsize
ENDFOR
device,/close
END