-
In terminal, run
cd Imagine
-
Edit
script.sh
. Set the path of dataset and output file.
#!/usr/bin/env bash
FEATURE=texture # choose from texture, color, shape
python main.py --cuda 0, 1 \
--mode train \
--batch_size 16 \
--dataset_path /lab/tmpig8d/u/yao_data/human_simulation_engine/V3_${FEATURE}_dataset \
--output_path out/deeper/${FEATURE}
- run
sh script.sh
- Edit
test.sh
.- Set the path of dataset and output file.
- Set the test checkpoint file
- If want to use the mismatch shape, texture, color as input, set
--mismatch
- Example
FEATURE=texture # choose from texture, color, shape
python main.py --cuda 0 \
--mode predict \
--batch_size 16 \
--dataset_path /lab/tmpig8d/u/yao_data/human_simulation_engine/V3_${FEATURE}_dataset \
--output_path out/deeper/${FEATURE} \
--test_epoch 269 \
- run
sh test.sh
- Install pytorch-fid
pip install pytorch-fid
- Resize the groughtruth image
For example:
#!/usr/bin/env bash
FEATURE=texture # choose from texture, color, shape
# Ground truth images dir
dataset_path=/lab/tmpig8d/u/yao_data/human_simulation_engine/V3_${FEATURE}_dataset/ori/valid/
# Processed gt images dir
process_path=out/deeper_deeper_res_new_texture/${FEATURE}/gt
python create_dataset.py --ori_path ${dataset_path} --path ${process_path}
- Run Fid code:
#!/usr/bin/env bash
FEATURE=texture # choose from texture, color, shape
# Processed gt images dir
process_path=out/deeper_deeper_res_new_texture/${FEATURE}/gt
# Generation result dir
output_path=out/deeper_deeper_res_new_texture/${FEATURE}/result_mismatch
python -m pytorch_fid ${process_path} ${output_path} --device cuda:1 --batch-size 128