-
Notifications
You must be signed in to change notification settings - Fork 57
/
Copy pathexperiment.py
executable file
·439 lines (361 loc) · 13.9 KB
/
experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
"""Different training experiments."""
from __future__ import division
import os
from collections import OrderedDict
import numpy as np
import tools
import train
from analysis import variance
from analysis import clustering
from analysis import data_analysis
from analysis import performance
from analysis import taskset
# TODO: make this flexible
DATAPATH = os.path.join(os.getcwd(), 'data')
def train_mante(seed=0, model_dir='train_mante'):
"""Training of only the Mante task."""
hp = {'target_perf': 0.9}
model_dir = os.path.join(DATAPATH, model_dir, str(seed))
train.train(model_dir, hp=hp, ruleset='mante', seed=seed)
def mante_tanh(seed=0, model_dir='mante_tanh'):
"""Training of only the Mante task."""
hp = {'activation': 'tanh',
'target_perf': 0.9}
model_dir = os.path.join(DATAPATH, model_dir, str(seed))
train.train(model_dir, hp=hp, ruleset='mante', seed=seed)
# Analyses
variance.compute_variance(model_dir)
log = tools.load_log(model_dir)
analysis = clustering.Analysis(model_dir, 'rule')
log['n_cluster'] = analysis.n_cluster
tools.save_log(log)
data_analysis.compute_var_all(model_dir)
def train_all(seed=0, root_dir='train_all'):
"""Training of all tasks."""
model_dir = os.path.join(DATAPATH, root_dir, str(seed))
hp = {'activation': 'softplus', 'w_rec_init': 'diag'} # TODO: change the default back to diag
rule_prob_map = {'contextdm1': 5, 'contextdm2': 5}
train.train(model_dir, hp=hp, ruleset='all',
rule_prob_map=rule_prob_map, seed=seed)
train_all_analysis(seed=seed, root_dir=root_dir)
def debug_train_all():
root_dir = 'debug_train_all'
seed = 0
model_dir = os.path.join(DATAPATH, root_dir, str(seed))
hp = {'activation': 'softplus', 'w_rec_init': 'diag'}
rule_prob_map = {'contextdm1': 5, 'contextdm2': 5}
train.train(model_dir, hp=hp, ruleset='all',
rule_prob_map=rule_prob_map, seed=seed, max_steps=1e3)
train_all_analysis(seed=seed, root_dir=root_dir)
def train_all_analysis(seed=0, root_dir='train_all'):
model_dir = os.path.join(DATAPATH, root_dir, str(seed))
# Analyses
variance.compute_variance(model_dir)
variance.compute_variance(model_dir, random_rotation=True)
log = tools.load_log(model_dir)
analysis = clustering.Analysis(model_dir, 'rule')
log['n_cluster'] = analysis.n_cluster
tools.save_log(log)
data_analysis.compute_var_all(model_dir)
for rule in ['dm1', 'contextdm1', 'multidm']:
performance.compute_choicefamily_varytime(model_dir, rule)
setups = [1, 2, 3]
for setup in setups:
taskset.compute_taskspace(model_dir, setup,
restore=False,
representation='rate')
taskset.compute_replacerule_performance(model_dir, setup, False)
def train_all_tanhgru(seed=0, model_dir='tanhgru'):
"""Training of all tasks with Tanh GRUs."""
model_dir = os.path.join(DATAPATH, model_dir, str(seed))
hp = {'activation': 'tanh',
'rnn_type': 'LeakyGRU'}
rule_prob_map = {'contextdm1': 5, 'contextdm2': 5}
train.train(model_dir, hp=hp, ruleset='all',
rule_prob_map=rule_prob_map, seed=seed)
# Analyses
variance.compute_variance(model_dir)
log = tools.load_log(model_dir)
analysis = clustering.Analysis(model_dir, 'rule')
log['n_cluster'] = analysis.n_cluster
tools.save_log(log)
data_analysis.compute_var_all(model_dir)
setups = [1, 2, 3]
for setup in setups:
taskset.compute_taskspace(model_dir, setup,
restore=False,
representation='rate')
taskset.compute_replacerule_performance(model_dir, setup, False)
def train_all_mixrule(seed=0, root_dir='mixrule'):
"""Training of all tasks."""
model_dir = os.path.join(DATAPATH, root_dir, str(seed))
hp = {'activation': 'relu', 'w_rec_init': 'diag',
'use_separate_input': True, 'mix_rule': True}
rule_prob_map = {'contextdm1': 5, 'contextdm2': 5}
train.train(model_dir, hp=hp, ruleset='all',
rule_prob_map=rule_prob_map, seed=seed)
# Analyses
variance.compute_variance(model_dir)
log = tools.load_log(model_dir)
analysis = clustering.Analysis(model_dir, 'rule')
log['n_cluster'] = analysis.n_cluster
tools.save_log(log)
setups = [1, 2, 3]
for setup in setups:
taskset.compute_taskspace(model_dir, setup,
restore=False,
representation='rate')
taskset.compute_replacerule_performance(model_dir, setup, False)
def train_all_mixrule_softplus(seed=0, root_dir='mixrule_softplus'):
"""Training of all tasks."""
model_dir = os.path.join(DATAPATH, root_dir, str(seed))
hp = {'activation': 'softplus', 'w_rec_init': 'diag',
'use_separate_input': True, 'mix_rule': True}
rule_prob_map = {'contextdm1': 5, 'contextdm2': 5}
train.train(model_dir, hp=hp, ruleset='all',
rule_prob_map=rule_prob_map, seed=seed)
# Analyses
variance.compute_variance(model_dir)
log = tools.load_log(model_dir)
analysis = clustering.Analysis(model_dir, 'rule')
log['n_cluster'] = analysis.n_cluster
tools.save_log(log)
setups = [1, 2, 3]
for setup in setups:
taskset.compute_taskspace(model_dir, setup,
restore=False,
representation='rate')
taskset.compute_replacerule_performance(model_dir, setup, False)
def train_seq(i):
# Ranges of hyperparameters to loop over
hp_ranges = OrderedDict()
hp_ranges['c_intsyn'] = [0, 1.0]
# Unravel the input index
keys = hp_ranges.keys()
dims = [len(hp_ranges[k]) for k in keys]
n_max = np.prod(dims)
indices = np.unravel_index(i % n_max, dims=dims)
# Set up new hyperparameter
hp = dict()
for key, index in zip(keys, indices):
hp[key] = hp_ranges[key][index]
hp['learning_rate'] = 0.001
hp['w_rec_init'] = 'randortho'
hp['easy_task'] = True
hp['activation'] = 'relu'
hp['ksi_intsyn'] = 0.01
hp['max_steps'] = 4e5
model_dir = os.path.join(DATAPATH, 'seq', str(i))
rule_trains = [['fdgo'], ['delaygo'], ['dm1', 'dm2'], ['multidm'],
['contextdm1', 'contextdm2']]
train.train_sequential(
model_dir,
rule_trains,
hp=hp,
max_steps=hp['max_steps'],
display_step=500,
ruleset='all',
seed=i // n_max,
)
def train_vary_hp_seq(i):
# Ranges of hyperparameters to loop over
hp_ranges = OrderedDict()
hp_ranges['activation'] = ['softplus', 'relu']
hp_ranges['w_rec_init'] = ['randortho']
hp_ranges['c_intsyn'] = [0, 0.1, 1.0, 10.]
hp_ranges['ksi_intsyn'] = [0.001, 0.01, 0.1]
hp_ranges['max_steps'] = [1e5, 2e5, 4e5]
# Unravel the input index
keys = hp_ranges.keys()
dims = [len(hp_ranges[k]) for k in keys]
n_max = np.prod(dims)
indices = np.unravel_index(i % n_max, dims=dims)
# Set up new hyperparameter
hp = dict()
for key, index in zip(keys, indices):
hp[key] = hp_ranges[key][index]
hp['learning_rate'] = 0.001
hp['w_rec_init'] = 'randortho'
hp['easy_task'] = True
model_dir = os.path.join(DATAPATH, 'seq_varyhp', str(i))
rule_trains = [['fdgo'], ['delaygo'], ['dm1', 'dm2'], ['multidm'],
['contextdm1', 'contextdm2']]
train.train_sequential(
model_dir,
rule_trains,
hp=hp,
max_steps=hp['max_steps'],
display_step=500,
ruleset='all',
seed=i // n_max,
)
def train_vary_hp(i):
"""Vary the hyperparameters.
This experiment loops over a set of hyperparameters.
Args:
i: int, the index of the hyperparameters list
"""
# Ranges of hyperparameters to loop over
hp_ranges = OrderedDict()
# hp_ranges['activation'] = ['softplus', 'relu', 'tanh', 'retanh']
# hp_ranges['rnn_type'] = ['LeakyRNN', 'LeakyGRU']
# hp_ranges['w_rec_init'] = ['diag', 'randortho']
hp_ranges['activation'] = ['softplus']
hp_ranges['rnn_type'] = ['LeakyRNN']
hp_ranges['w_rec_init'] = ['randortho']
hp_ranges['l1_h'] = [0, 1e-9, 1e-8, 1e-7, 1e-6] # TODO(gryang): Change this?
hp_ranges['l2_h'] = [0]
hp_ranges['l1_weight'] = [0, 1e-7, 1e-6, 1e-5]
# TODO(gryang): add the level of overtraining
# Unravel the input index
keys = hp_ranges.keys()
dims = [len(hp_ranges[k]) for k in keys]
n_max = np.prod(dims)
indices = np.unravel_index(i % n_max, dims=dims)
# Set up new hyperparameter
hp = dict()
for key, index in zip(keys, indices):
hp[key] = hp_ranges[key][index]
model_dir = os.path.join(DATAPATH, 'varyhp_reg2', str(i))
rule_prob_map = {'contextdm1': 5, 'contextdm2': 5}
train.train(model_dir, hp, ruleset='all',
rule_prob_map=rule_prob_map, seed=i // n_max)
# Analyses
variance.compute_variance(model_dir)
log = tools.load_log(model_dir)
analysis = clustering.Analysis(model_dir, 'rule')
log['n_cluster'] = analysis.n_cluster
tools.save_log(log)
data_analysis.compute_var_all(model_dir)
def _base_vary_hp_mante(i, hp_ranges, base_name):
"""Vary hyperparameters for mante tasks."""
# Unravel the input index
keys = hp_ranges.keys()
dims = [len(hp_ranges[k]) for k in keys]
n_max = np.prod(dims)
indices = np.unravel_index(i % n_max, dims=dims)
# Set up new hyperparameter
hp = dict()
for key, index in zip(keys, indices):
hp[key] = hp_ranges[key][index]
model_dir = os.path.join(DATAPATH, base_name, str(i))
train.train(model_dir, hp, ruleset='mante',
max_steps=1e7, seed=i // n_max)
# Analyses
variance.compute_variance(model_dir)
log = tools.load_log(model_dir)
analysis = clustering.Analysis(model_dir, 'rule')
log['n_cluster'] = analysis.n_cluster
tools.save_log(log)
data_analysis.compute_var_all(model_dir)
def vary_l2_init_mante(i):
"""Vary the hyperparameters and train on Mante tasks only.
This experiment loops over a set of hyperparameters.
Args:
i: int, the index of the hyperparameters list
"""
# Ranges of hyperparameters to loop over
hp_ranges = OrderedDict()
hp_ranges['activation'] = ['softplus']
hp_ranges['rnn_type'] = ['LeakyRNN']
hp_ranges['w_rec_init'] = ['randortho']
hp_ranges['l2_weight_init'] = [0, 1e-4, 2*1e-4, 4*1e-4, 8*1e-4, 1.6*1e-3]
hp_ranges['target_perf'] = [0.9]
_base_vary_hp_mante(i, hp_ranges, base_name='vary_l2init_mante')
def vary_l2_weight_mante(i):
"""Vary the hyperparameters and train on Mante tasks only.
This experiment loops over a set of hyperparameters.
Args:
i: int, the index of the hyperparameters list
"""
# Ranges of hyperparameters to loop over
hp_ranges = OrderedDict()
hp_ranges['activation'] = ['softplus']
hp_ranges['rnn_type'] = ['LeakyRNN']
hp_ranges['w_rec_init'] = ['randortho']
hp_ranges['l2_weight'] = [0, 1e-4, 2*1e-4, 4*1e-4, 8*1e-4, 1.6*1e-3]
hp_ranges['target_perf'] = [0.9]
_base_vary_hp_mante(i, hp_ranges, base_name='vary_l2weight_mante')
def vary_p_weight_train_mante(i):
"""Vary the hyperparameters and train on Mante tasks only.
This experiment loops over a set of hyperparameters.
Args:
i: int, the index of the hyperparameters list
"""
# Ranges of hyperparameters to loop over
hp_ranges = OrderedDict()
hp_ranges['activation'] = ['softplus']
hp_ranges['rnn_type'] = ['LeakyRNN']
hp_ranges['w_rec_init'] = ['randortho']
# hp_ranges['p_weight_train'] = [0, 0.2, 0.4, 0.6, 0.8, 1.0]
hp_ranges['p_weight_train'] = [0.05, 0.075]
hp_ranges['target_perf'] = [0.9]
_base_vary_hp_mante(i, hp_ranges, base_name='vary_pweighttrain_mante')
def pretrain(setup, seed):
"""Get pre-trained networks."""
hp = dict()
hp['learning_rate'] = 0.001
hp['w_rec_init'] = 'diag'
hp['easy_task'] = False
hp['activation'] = 'relu'
hp['max_steps'] = 2*1e6
hp['l1_h'] = 1e-8
hp['target_perf'] = 0.97
hp['n_rnn'] = 128
hp['use_separate_input'] = True
model_dir = os.path.join(DATAPATH, 'pretrain', 'setup'+str(setup), str(seed))
if setup == 0:
rule_trains = ['contextdm1', 'contextdm2', 'contextdelaydm2']
elif setup == 1:
rule_trains = ['fdgo', 'fdanti', 'delaygo']
else:
raise ValueError
train.train(model_dir,
hp=hp,
max_steps=hp['max_steps'],
display_step=500,
ruleset='all',
rule_trains=rule_trains,
rule_prob_map=None,
seed=seed,
)
def posttrain(pretrain_setup, posttrain_setup, trainables, seed):
"""Training based on pre-trained networks."""
hp = {'n_rnn': 128,
'l1_h': 1e-8,
'target_perf': 0.97,
'activation': 'relu',
'max_steps': 1e6,
'use_separate_input': True}
if posttrain_setup == 0:
rule_trains = ['contextdelaydm1']
elif posttrain_setup == 1:
rule_trains = ['delayanti']
else:
raise ValueError
if trainables == 0:
hp['trainables'] = 'all'
elif trainables == 1:
hp['trainables'] = 'rule'
else:
raise ValueError
name = (str(pretrain_setup) + '_' + str(posttrain_setup) +
'_' + str(trainables) + '_' + str(seed))
model_dir = os.path.join(DATAPATH, 'posttrain', name)
load_dir = os.path.join(DATAPATH, 'pretrain',
'setup' + str(pretrain_setup), str(seed))
hp['load_dir'] = load_dir
hp['pretrain_setup'] = pretrain_setup
hp['posttrain_setup'] = posttrain_setup
train.train(model_dir,
hp=hp,
max_steps=hp['max_steps'],
display_step=50,
ruleset='all',
rule_trains=rule_trains,
seed=seed,
load_dir=load_dir,
trainables=hp['trainables'],
)
if __name__ == '__main__':
debug_train_all()