-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmakeCodebook.Rmd
284 lines (258 loc) · 13.5 KB
/
makeCodebook.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
Codebook
========
Codebook was generated on 2016-09-05 17:48:14 during the same process that generated the dataset. See `run_analysis.md` or `run_analysis.html` for details on dataset creation.
Variable list and descriptions
------------------------------
Variable name | Description
-----------------|------------
subject | ID the subject who performed the activity for each window sample. Its range is from 1 to 30.
activity | Activity name
featDomain | Feature: Time domain signal or frequency domain signal (Time or Freq)
featInstrument | Feature: Measuring instrument (Accelerometer or Gyroscope)
featAcceleration | Feature: Acceleration signal (Body or Gravity)
featVariable | Feature: Variable (Mean or SD)
featJerk | Feature: Jerk signal
featMagnitude | Feature: Magnitude of the signals calculated using the Euclidean norm
featAxis | Feature: 3-axial signals in the X, Y and Z directions (X, Y, or Z)
featCount | Feature: Count of data points used to compute `average`
featAverage | Feature: Average of each variable for each activity and each subject
Dataset structure
-----------------
```r
str(dtTidy)
```
```
## Classes 'data.table' and 'data.frame': 11880 obs. of 11 variables:
## $ subject : int 1 1 1 1 1 1 1 1 1 1 ...
## $ activity : Factor w/ 6 levels "LAYING","SITTING",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ featDomain : Factor w/ 2 levels "Time","Freq": 1 1 1 1 1 1 1 1 1 1 ...
## $ featAcceleration: Factor w/ 3 levels NA,"Body","Gravity": 1 1 1 1 1 1 1 1 1 1 ...
## $ featInstrument : Factor w/ 2 levels "Accelerometer",..: 2 2 2 2 2 2 2 2 2 2 ...
## $ featJerk : Factor w/ 2 levels NA,"Jerk": 1 1 1 1 1 1 1 1 2 2 ...
## $ featMagnitude : Factor w/ 2 levels NA,"Magnitude": 1 1 1 1 1 1 2 2 1 1 ...
## $ featVariable : Factor w/ 2 levels "Mean","SD": 1 1 1 2 2 2 1 2 1 1 ...
## $ featAxis : Factor w/ 4 levels NA,"X","Y","Z": 2 3 4 2 3 4 1 1 2 3 ...
## $ count : int 50 50 50 50 50 50 50 50 50 50 ...
## $ average : num -0.0166 -0.0645 0.1487 -0.8735 -0.9511 ...
## - attr(*, "sorted")= chr "subject" "activity" "featDomain" "featAcceleration" ...
## - attr(*, ".internal.selfref")=<externalptr>
```
List the key variables in the data table
----------------------------------------
```r
key(dtTidy)
```
```
## [1] "subject" "activity" "featDomain"
## [4] "featAcceleration" "featInstrument" "featJerk"
## [7] "featMagnitude" "featVariable" "featAxis"
```
Show a few rows of the dataset
------------------------------
```r
dtTidy
```
```
## subject activity featDomain featAcceleration featInstrument
## 1: 1 LAYING Time NA Gyroscope
## 2: 1 LAYING Time NA Gyroscope
## 3: 1 LAYING Time NA Gyroscope
## 4: 1 LAYING Time NA Gyroscope
## 5: 1 LAYING Time NA Gyroscope
## ---
## 11876: 30 WALKING_UPSTAIRS Freq Body Accelerometer
## 11877: 30 WALKING_UPSTAIRS Freq Body Accelerometer
## 11878: 30 WALKING_UPSTAIRS Freq Body Accelerometer
## 11879: 30 WALKING_UPSTAIRS Freq Body Accelerometer
## 11880: 30 WALKING_UPSTAIRS Freq Body Accelerometer
## featJerk featMagnitude featVariable featAxis count average
## 1: NA NA Mean X 50 -0.01655309
## 2: NA NA Mean Y 50 -0.06448612
## 3: NA NA Mean Z 50 0.14868944
## 4: NA NA SD X 50 -0.87354387
## 5: NA NA SD Y 50 -0.95109044
## ---
## 11876: Jerk NA SD X 65 -0.56156521
## 11877: Jerk NA SD Y 65 -0.61082660
## 11878: Jerk NA SD Z 65 -0.78475388
## 11879: Jerk Magnitude Mean NA 65 -0.54978489
## 11880: Jerk Magnitude SD NA 65 -0.58087813
```
Summary of variables
--------------------
```r
summary(dtTidy)
```
```
## subject activity featDomain featAcceleration
## Min. : 1.0 LAYING :1980 Time:7200 NA :4680
## 1st Qu.: 8.0 SITTING :1980 Freq:4680 Body :5760
## Median :15.5 STANDING :1980 Gravity:1440
## Mean :15.5 WALKING :1980
## 3rd Qu.:23.0 WALKING_DOWNSTAIRS:1980
## Max. :30.0 WALKING_UPSTAIRS :1980
## featInstrument featJerk featMagnitude featVariable featAxis
## Accelerometer:7200 NA :7200 NA :8640 Mean:5940 NA:3240
## Gyroscope :4680 Jerk:4680 Magnitude:3240 SD :5940 X :2880
## Y :2880
## Z :2880
##
##
## count average
## Min. :36.00 Min. :-0.99767
## 1st Qu.:49.00 1st Qu.:-0.96205
## Median :54.50 Median :-0.46989
## Mean :57.22 Mean :-0.48436
## 3rd Qu.:63.25 3rd Qu.:-0.07836
## Max. :95.00 Max. : 0.97451
```
List all possible combinations of features
------------------------------------------
```r
dtTidy[, .N, by=c(names(dtTidy)[grep("^feat", names(dtTidy))])]
```
```
## featDomain featAcceleration featInstrument featJerk featMagnitude
## 1: Time NA Gyroscope NA NA
## 2: Time NA Gyroscope NA NA
## 3: Time NA Gyroscope NA NA
## 4: Time NA Gyroscope NA NA
## 5: Time NA Gyroscope NA NA
## 6: Time NA Gyroscope NA NA
## 7: Time NA Gyroscope NA Magnitude
## 8: Time NA Gyroscope NA Magnitude
## 9: Time NA Gyroscope Jerk NA
## 10: Time NA Gyroscope Jerk NA
## 11: Time NA Gyroscope Jerk NA
## 12: Time NA Gyroscope Jerk NA
## 13: Time NA Gyroscope Jerk NA
## 14: Time NA Gyroscope Jerk NA
## 15: Time NA Gyroscope Jerk Magnitude
## 16: Time NA Gyroscope Jerk Magnitude
## 17: Time Body Accelerometer NA NA
## 18: Time Body Accelerometer NA NA
## 19: Time Body Accelerometer NA NA
## 20: Time Body Accelerometer NA NA
## 21: Time Body Accelerometer NA NA
## 22: Time Body Accelerometer NA NA
## 23: Time Body Accelerometer NA Magnitude
## 24: Time Body Accelerometer NA Magnitude
## 25: Time Body Accelerometer Jerk NA
## 26: Time Body Accelerometer Jerk NA
## 27: Time Body Accelerometer Jerk NA
## 28: Time Body Accelerometer Jerk NA
## 29: Time Body Accelerometer Jerk NA
## 30: Time Body Accelerometer Jerk NA
## 31: Time Body Accelerometer Jerk Magnitude
## 32: Time Body Accelerometer Jerk Magnitude
## 33: Time Gravity Accelerometer NA NA
## 34: Time Gravity Accelerometer NA NA
## 35: Time Gravity Accelerometer NA NA
## 36: Time Gravity Accelerometer NA NA
## 37: Time Gravity Accelerometer NA NA
## 38: Time Gravity Accelerometer NA NA
## 39: Time Gravity Accelerometer NA Magnitude
## 40: Time Gravity Accelerometer NA Magnitude
## 41: Freq NA Gyroscope NA NA
## 42: Freq NA Gyroscope NA NA
## 43: Freq NA Gyroscope NA NA
## 44: Freq NA Gyroscope NA NA
## 45: Freq NA Gyroscope NA NA
## 46: Freq NA Gyroscope NA NA
## 47: Freq NA Gyroscope NA Magnitude
## 48: Freq NA Gyroscope NA Magnitude
## 49: Freq NA Gyroscope Jerk Magnitude
## 50: Freq NA Gyroscope Jerk Magnitude
## 51: Freq Body Accelerometer NA NA
## 52: Freq Body Accelerometer NA NA
## 53: Freq Body Accelerometer NA NA
## 54: Freq Body Accelerometer NA NA
## 55: Freq Body Accelerometer NA NA
## 56: Freq Body Accelerometer NA NA
## 57: Freq Body Accelerometer NA Magnitude
## 58: Freq Body Accelerometer NA Magnitude
## 59: Freq Body Accelerometer Jerk NA
## 60: Freq Body Accelerometer Jerk NA
## 61: Freq Body Accelerometer Jerk NA
## 62: Freq Body Accelerometer Jerk NA
## 63: Freq Body Accelerometer Jerk NA
## 64: Freq Body Accelerometer Jerk NA
## 65: Freq Body Accelerometer Jerk Magnitude
## 66: Freq Body Accelerometer Jerk Magnitude
## featDomain featAcceleration featInstrument featJerk featMagnitude
## featVariable featAxis N
## 1: Mean X 180
## 2: Mean Y 180
## 3: Mean Z 180
## 4: SD X 180
## 5: SD Y 180
## 6: SD Z 180
## 7: Mean NA 180
## 8: SD NA 180
## 9: Mean X 180
## 10: Mean Y 180
## 11: Mean Z 180
## 12: SD X 180
## 13: SD Y 180
## 14: SD Z 180
## 15: Mean NA 180
## 16: SD NA 180
## 17: Mean X 180
## 18: Mean Y 180
## 19: Mean Z 180
## 20: SD X 180
## 21: SD Y 180
## 22: SD Z 180
## 23: Mean NA 180
## 24: SD NA 180
## 25: Mean X 180
## 26: Mean Y 180
## 27: Mean Z 180
## 28: SD X 180
## 29: SD Y 180
## 30: SD Z 180
## 31: Mean NA 180
## 32: SD NA 180
## 33: Mean X 180
## 34: Mean Y 180
## 35: Mean Z 180
## 36: SD X 180
## 37: SD Y 180
## 38: SD Z 180
## 39: Mean NA 180
## 40: SD NA 180
## 41: Mean X 180
## 42: Mean Y 180
## 43: Mean Z 180
## 44: SD X 180
## 45: SD Y 180
## 46: SD Z 180
## 47: Mean NA 180
## 48: SD NA 180
## 49: Mean NA 180
## 50: SD NA 180
## 51: Mean X 180
## 52: Mean Y 180
## 53: Mean Z 180
## 54: SD X 180
## 55: SD Y 180
## 56: SD Z 180
## 57: Mean NA 180
## 58: SD NA 180
## 59: Mean X 180
## 60: Mean Y 180
## 61: Mean Z 180
## 62: SD X 180
## 63: SD Y 180
## 64: SD Z 180
## 65: Mean NA 180
## 66: SD NA 180
## featVariable featAxis N
```
Save to file
------------
Save data table objects to a tab-delimited text file called `DatasetHumanActivityRecognitionUsingSmartphones.txt`.
```r
f <- file.path(path, "DatasetHumanActivityRecognitionUsingSmartphones.txt")
write.table(dtTidy, f, quote=FALSE, sep="\t", row.names=FALSE)
```