forked from llvm-mirror/llvm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
DivergenceAnalysis.cpp
330 lines (303 loc) · 12 KB
/
DivergenceAnalysis.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
//===- DivergenceAnalysis.cpp --------- Divergence Analysis Implementation -==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements divergence analysis which determines whether a branch
// in a GPU program is divergent.It can help branch optimizations such as jump
// threading and loop unswitching to make better decisions.
//
// GPU programs typically use the SIMD execution model, where multiple threads
// in the same execution group have to execute in lock-step. Therefore, if the
// code contains divergent branches (i.e., threads in a group do not agree on
// which path of the branch to take), the group of threads has to execute all
// the paths from that branch with different subsets of threads enabled until
// they converge at the immediately post-dominating BB of the paths.
//
// Due to this execution model, some optimizations such as jump
// threading and loop unswitching can be unfortunately harmful when performed on
// divergent branches. Therefore, an analysis that computes which branches in a
// GPU program are divergent can help the compiler to selectively run these
// optimizations.
//
// This file defines divergence analysis which computes a conservative but
// non-trivial approximation of all divergent branches in a GPU program. It
// partially implements the approach described in
//
// Divergence Analysis
// Sampaio, Souza, Collange, Pereira
// TOPLAS '13
//
// The divergence analysis identifies the sources of divergence (e.g., special
// variables that hold the thread ID), and recursively marks variables that are
// data or sync dependent on a source of divergence as divergent.
//
// While data dependency is a well-known concept, the notion of sync dependency
// is worth more explanation. Sync dependence characterizes the control flow
// aspect of the propagation of branch divergence. For example,
//
// %cond = icmp slt i32 %tid, 10
// br i1 %cond, label %then, label %else
// then:
// br label %merge
// else:
// br label %merge
// merge:
// %a = phi i32 [ 0, %then ], [ 1, %else ]
//
// Suppose %tid holds the thread ID. Although %a is not data dependent on %tid
// because %tid is not on its use-def chains, %a is sync dependent on %tid
// because the branch "br i1 %cond" depends on %tid and affects which value %a
// is assigned to.
//
// The current implementation has the following limitations:
// 1. intra-procedural. It conservatively considers the arguments of a
// non-kernel-entry function and the return value of a function call as
// divergent.
// 2. memory as black box. It conservatively considers values loaded from
// generic or local address as divergent. This can be improved by leveraging
// pointer analysis.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/DivergenceAnalysis.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <vector>
using namespace llvm;
namespace {
class DivergencePropagator {
public:
DivergencePropagator(Function &F, TargetTransformInfo &TTI, DominatorTree &DT,
PostDominatorTree &PDT, DenseSet<const Value *> &DV)
: F(F), TTI(TTI), DT(DT), PDT(PDT), DV(DV) {}
void populateWithSourcesOfDivergence();
void propagate();
private:
// A helper function that explores data dependents of V.
void exploreDataDependency(Value *V);
// A helper function that explores sync dependents of TI.
void exploreSyncDependency(TerminatorInst *TI);
// Computes the influence region from Start to End. This region includes all
// basic blocks on any simple path from Start to End.
void computeInfluenceRegion(BasicBlock *Start, BasicBlock *End,
DenseSet<BasicBlock *> &InfluenceRegion);
// Finds all users of I that are outside the influence region, and add these
// users to Worklist.
void findUsersOutsideInfluenceRegion(
Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion);
Function &F;
TargetTransformInfo &TTI;
DominatorTree &DT;
PostDominatorTree &PDT;
std::vector<Value *> Worklist; // Stack for DFS.
DenseSet<const Value *> &DV; // Stores all divergent values.
};
void DivergencePropagator::populateWithSourcesOfDivergence() {
Worklist.clear();
DV.clear();
for (auto &I : instructions(F)) {
if (TTI.isSourceOfDivergence(&I)) {
Worklist.push_back(&I);
DV.insert(&I);
}
}
for (auto &Arg : F.args()) {
if (TTI.isSourceOfDivergence(&Arg)) {
Worklist.push_back(&Arg);
DV.insert(&Arg);
}
}
}
void DivergencePropagator::exploreSyncDependency(TerminatorInst *TI) {
// Propagation rule 1: if branch TI is divergent, all PHINodes in TI's
// immediate post dominator are divergent. This rule handles if-then-else
// patterns. For example,
//
// if (tid < 5)
// a1 = 1;
// else
// a2 = 2;
// a = phi(a1, a2); // sync dependent on (tid < 5)
BasicBlock *ThisBB = TI->getParent();
// Unreachable blocks may not be in the dominator tree.
if (!DT.isReachableFromEntry(ThisBB))
return;
// If the function has no exit blocks or doesn't reach any exit blocks, the
// post dominator may be null.
DomTreeNode *ThisNode = PDT.getNode(ThisBB);
if (!ThisNode)
return;
BasicBlock *IPostDom = ThisNode->getIDom()->getBlock();
if (IPostDom == nullptr)
return;
for (auto I = IPostDom->begin(); isa<PHINode>(I); ++I) {
// A PHINode is uniform if it returns the same value no matter which path is
// taken.
if (!cast<PHINode>(I)->hasConstantOrUndefValue() && DV.insert(&*I).second)
Worklist.push_back(&*I);
}
// Propagation rule 2: if a value defined in a loop is used outside, the user
// is sync dependent on the condition of the loop exits that dominate the
// user. For example,
//
// int i = 0;
// do {
// i++;
// if (foo(i)) ... // uniform
// } while (i < tid);
// if (bar(i)) ... // divergent
//
// A program may contain unstructured loops. Therefore, we cannot leverage
// LoopInfo, which only recognizes natural loops.
//
// The algorithm used here handles both natural and unstructured loops. Given
// a branch TI, we first compute its influence region, the union of all simple
// paths from TI to its immediate post dominator (IPostDom). Then, we search
// for all the values defined in the influence region but used outside. All
// these users are sync dependent on TI.
DenseSet<BasicBlock *> InfluenceRegion;
computeInfluenceRegion(ThisBB, IPostDom, InfluenceRegion);
// An insight that can speed up the search process is that all the in-region
// values that are used outside must dominate TI. Therefore, instead of
// searching every basic blocks in the influence region, we search all the
// dominators of TI until it is outside the influence region.
BasicBlock *InfluencedBB = ThisBB;
while (InfluenceRegion.count(InfluencedBB)) {
for (auto &I : *InfluencedBB)
findUsersOutsideInfluenceRegion(I, InfluenceRegion);
DomTreeNode *IDomNode = DT.getNode(InfluencedBB)->getIDom();
if (IDomNode == nullptr)
break;
InfluencedBB = IDomNode->getBlock();
}
}
void DivergencePropagator::findUsersOutsideInfluenceRegion(
Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion) {
for (User *U : I.users()) {
Instruction *UserInst = cast<Instruction>(U);
if (!InfluenceRegion.count(UserInst->getParent())) {
if (DV.insert(UserInst).second)
Worklist.push_back(UserInst);
}
}
}
// A helper function for computeInfluenceRegion that adds successors of "ThisBB"
// to the influence region.
static void
addSuccessorsToInfluenceRegion(BasicBlock *ThisBB, BasicBlock *End,
DenseSet<BasicBlock *> &InfluenceRegion,
std::vector<BasicBlock *> &InfluenceStack) {
for (BasicBlock *Succ : successors(ThisBB)) {
if (Succ != End && InfluenceRegion.insert(Succ).second)
InfluenceStack.push_back(Succ);
}
}
void DivergencePropagator::computeInfluenceRegion(
BasicBlock *Start, BasicBlock *End,
DenseSet<BasicBlock *> &InfluenceRegion) {
assert(PDT.properlyDominates(End, Start) &&
"End does not properly dominate Start");
// The influence region starts from the end of "Start" to the beginning of
// "End". Therefore, "Start" should not be in the region unless "Start" is in
// a loop that doesn't contain "End".
std::vector<BasicBlock *> InfluenceStack;
addSuccessorsToInfluenceRegion(Start, End, InfluenceRegion, InfluenceStack);
while (!InfluenceStack.empty()) {
BasicBlock *BB = InfluenceStack.back();
InfluenceStack.pop_back();
addSuccessorsToInfluenceRegion(BB, End, InfluenceRegion, InfluenceStack);
}
}
void DivergencePropagator::exploreDataDependency(Value *V) {
// Follow def-use chains of V.
for (User *U : V->users()) {
Instruction *UserInst = cast<Instruction>(U);
if (DV.insert(UserInst).second)
Worklist.push_back(UserInst);
}
}
void DivergencePropagator::propagate() {
// Traverse the dependency graph using DFS.
while (!Worklist.empty()) {
Value *V = Worklist.back();
Worklist.pop_back();
if (TerminatorInst *TI = dyn_cast<TerminatorInst>(V)) {
// Terminators with less than two successors won't introduce sync
// dependency. Ignore them.
if (TI->getNumSuccessors() > 1)
exploreSyncDependency(TI);
}
exploreDataDependency(V);
}
}
} /// end namespace anonymous
// Register this pass.
char DivergenceAnalysis::ID = 0;
INITIALIZE_PASS_BEGIN(DivergenceAnalysis, "divergence", "Divergence Analysis",
false, true)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
INITIALIZE_PASS_END(DivergenceAnalysis, "divergence", "Divergence Analysis",
false, true)
FunctionPass *llvm::createDivergenceAnalysisPass() {
return new DivergenceAnalysis();
}
void DivergenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<PostDominatorTreeWrapperPass>();
AU.setPreservesAll();
}
bool DivergenceAnalysis::runOnFunction(Function &F) {
auto *TTIWP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
if (TTIWP == nullptr)
return false;
TargetTransformInfo &TTI = TTIWP->getTTI(F);
// Fast path: if the target does not have branch divergence, we do not mark
// any branch as divergent.
if (!TTI.hasBranchDivergence())
return false;
DivergentValues.clear();
auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
DivergencePropagator DP(F, TTI,
getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
PDT, DivergentValues);
DP.populateWithSourcesOfDivergence();
DP.propagate();
return false;
}
void DivergenceAnalysis::print(raw_ostream &OS, const Module *) const {
if (DivergentValues.empty())
return;
const Value *FirstDivergentValue = *DivergentValues.begin();
const Function *F;
if (const Argument *Arg = dyn_cast<Argument>(FirstDivergentValue)) {
F = Arg->getParent();
} else if (const Instruction *I =
dyn_cast<Instruction>(FirstDivergentValue)) {
F = I->getParent()->getParent();
} else {
llvm_unreachable("Only arguments and instructions can be divergent");
}
// Dumps all divergent values in F, arguments and then instructions.
for (auto &Arg : F->args()) {
if (DivergentValues.count(&Arg))
OS << "DIVERGENT: " << Arg << "\n";
}
// Iterate instructions using instructions() to ensure a deterministic order.
for (auto &I : instructions(F)) {
if (DivergentValues.count(&I))
OS << "DIVERGENT:" << I << "\n";
}
}