forked from antao97/UnsupervisedPointCloudReconstruction
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
134 lines (110 loc) · 4.37 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
@Author: An Tao
@Contact: [email protected]
@File: dataset.py
@Time: 2020/1/2 10:26 AM
"""
import os
import torch
import json
import h5py
from glob import glob
import numpy as np
import torch.utils.data as data
def translate_pointcloud(pointcloud):
xyz1 = np.random.uniform(low=2./3., high=3./2., size=[3])
xyz2 = np.random.uniform(low=-0.2, high=0.2, size=[3])
translated_pointcloud = np.add(np.multiply(pointcloud, xyz1), xyz2).astype('float32')
return translated_pointcloud
def jitter_pointcloud(pointcloud, sigma=0.01, clip=0.02):
N, C = pointcloud.shape
pointcloud += np.clip(sigma * np.random.randn(N, C), -1*clip, clip)
return pointcloud
def rotate_pointcloud(pointcloud):
theta = np.pi*2 * np.random.choice(24) / 24
rotation_matrix = np.array([[np.cos(theta), -np.sin(theta)],[np.sin(theta), np.cos(theta)]])
pointcloud[:,[0,2]] = pointcloud[:,[0,2]].dot(rotation_matrix) # random rotation (x,z)
return pointcloud
class Dataset(data.Dataset):
def __init__(self, root, dataset_name='modelnet40',
num_points=2048, split='train', load_name=False,
random_rotate=False, random_jitter=False, random_translate=False):
assert dataset_name.lower() in ['shapenetcorev2',
'shapenetpart', 'modelnet10', 'modelnet40']
assert num_points <= 2048
if dataset_name in ['shapenetpart', 'shapenetcorev2']:
assert split.lower() in ['train', 'test', 'val', 'trainval', 'all']
else:
assert split.lower() in ['train', 'test', 'all']
self.root = os.path.join(root, dataset_name + '*hdf5_2048')
self.dataset_name = dataset_name
self.num_points = num_points
self.split = split
self.load_name = load_name
self.random_rotate = random_rotate
self.random_jitter = random_jitter
self.random_translate = random_translate
self.path_h5py_all = []
self.path_json_all = []
if self.split in ['train','trainval','all']:
self.get_path('train')
if self.dataset_name in ['shapenetpart', 'shapenetcorev2']:
if self.split in ['val','trainval','all']:
self.get_path('val')
if self.split in ['test', 'all']:
self.get_path('test')
self.path_h5py_all.sort()
data, label = self.load_h5py(self.path_h5py_all)
if self.load_name:
self.path_json_all.sort()
self.name = self.load_json(self.path_json_all) # load label name
self.data = np.concatenate(data, axis=0)
self.label = np.concatenate(label, axis=0)
def get_path(self, type):
path_h5py = os.path.join(self.root, '*%s*.h5'%type)
self.path_h5py_all += glob(path_h5py)
if self.load_name:
path_json = os.path.join(self.root, '%s*_id2name.json'%type)
self.path_json_all += glob(path_json)
return
def load_h5py(self, path):
all_data = []
all_label = []
for h5_name in path:
f = h5py.File(h5_name, 'r+')
data = f['data'][:].astype('float32')
label = f['label'][:].astype('int64')
f.close()
all_data.append(data)
all_label.append(label)
return all_data, all_label
def load_json(self, path):
all_data = []
for json_name in path:
j = open(json_name, 'r+')
data = json.load(j)
all_data += data
return all_data
def __getitem__(self, item):
point_set = self.data[item][:self.num_points]
label = self.label[item]
if self.load_name:
name = self.name[item] # get label name
if self.random_rotate:
point_set = rotate_pointcloud(point_set)
if self.random_jitter:
point_set = jitter_pointcloud(point_set)
if self.random_translate:
point_set = translate_pointcloud(point_set)
# convert numpy array to pytorch Tensor
point_set = torch.from_numpy(point_set)
label = torch.from_numpy(np.array([label]).astype(np.int64))
label = label.squeeze(0)
if self.load_name:
return point_set, label, name
else:
return point_set, label
def __len__(self):
return self.data.shape[0]