forked from MIC-DKFZ/batchgenerators
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_spatial_transformations.py
141 lines (110 loc) · 5.75 KB
/
test_spatial_transformations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# Copyright 2021 Division of Medical Image Computing, German Cancer Research Center (DKFZ)
# and Applied Computer Vision Lab, Helmholtz Imaging Platform
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from batchgenerators.augmentations.spatial_transformations import augment_rot90, augment_resize, augment_transpose_axes
class AugmentTransposeAxes(unittest.TestCase):
def setUp(self):
np.random.seed(123)
self.data_3D = np.random.random((2, 4, 5, 6))
self.seg_3D = np.random.random(self.data_3D.shape)
def test_transpose_axes(self):
n_iter = 1000
tmp = 0
for i in range(n_iter):
data_out, seg_out = augment_transpose_axes(self.data_3D, self.seg_3D, axes=(1, 0))
if np.array_equal(data_out, np.swapaxes(self.data_3D, 1, 2)):
tmp += 1
self.assertAlmostEqual(tmp, n_iter/2., delta=10)
class AugmentResize(unittest.TestCase):
def setUp(self):
np.random.seed(123)
self.data_3D = np.random.random((2, 12, 14, 31))
self.seg_3D = np.random.random(self.data_3D.shape)
def test_resize(self):
data_resized, seg_resized = augment_resize(self.data_3D, self.seg_3D, target_size=15)
mean_resized = float(np.mean(data_resized))
mean_original = float(np.mean(self.data_3D))
self.assertAlmostEqual(mean_original, mean_resized, places=2)
self.assertTrue(all((data_resized.shape[i] == 15 and seg_resized.shape[i] == 15) for i in
range(1, len(data_resized.shape))))
def test_resize2(self):
data_resized, seg_resized = augment_resize(self.data_3D, self.seg_3D, target_size=(7, 5, 6))
mean_resized = float(np.mean(data_resized))
mean_original = float(np.mean(self.data_3D))
self.assertAlmostEqual(mean_original, mean_resized, places=2)
self.assertTrue(all([i == j for i, j in zip(data_resized.shape[1:], (7, 5, 6))]))
self.assertTrue(all([i == j for i, j in zip(seg_resized.shape[1:], (7, 5, 6))]))
class AugmentRot90(unittest.TestCase):
def setUp(self):
np.random.seed(123)
self.data_3D = np.random.random((2, 4, 5, 6))
self.seg_3D = np.random.random(self.data_3D.shape)
self.num_rot = [1]
def test_rotation_checkerboard(self):
data_2d_checkerboard = np.zeros((1, 2, 2))
data_2d_checkerboard[0, 0, 0] = 1
data_2d_checkerboard[0, 1, 1] = 1
data_rotated_list = []
n_iter = 1000
for i in range(n_iter):
d_r, _ = augment_rot90(np.copy(data_2d_checkerboard), None, num_rot=[4,1], axes=[0, 1])
data_rotated_list.append(d_r)
data_rotated_np = np.array(data_rotated_list)
sum_data_list = np.sum(data_rotated_np, axis=0)
a = np.unique(sum_data_list)
self.assertAlmostEqual(a[0], n_iter/2, delta=20)
self.assertTrue(len(a) == 2)
def test_rotation(self):
data_rotated, seg_rotated = augment_rot90(np.copy(self.data_3D), np.copy(self.seg_3D), num_rot=self.num_rot,
axes=[0, 1])
for i in range(self.data_3D.shape[1]):
self.assertTrue(np.array_equal(self.data_3D[:, i, :, :], np.flip(data_rotated[:, :, i, :], axis=1)))
self.assertTrue(np.array_equal(self.seg_3D[:, i, :, :], np.flip(seg_rotated[:, :, i, :], axis=1)))
def test_randomness_rotation_axis(self):
tmp = 0
for j in range(100):
data_rotated, seg_rotated = augment_rot90(np.copy(self.data_3D), np.copy(self.seg_3D), num_rot=self.num_rot,
axes=[0, 1, 2])
if np.array_equal(self.data_3D[:, 0, :, :], np.flip(data_rotated[:, :, 0, :], axis=1)):
tmp += 1
self.assertAlmostEqual(tmp, 33, places=2)
def test_rotation_list(self):
num_rot = [1, 3]
data_rotated, seg_rotated = augment_rot90(np.copy(self.data_3D), np.copy(self.seg_3D), num_rot=num_rot,
axes=[0, 1])
tmp = 0
for i in range(self.data_3D.shape[1]):
# check for normal and inverse rotations
normal_rotated = np.array_equal(self.data_3D[:, i, :, :], data_rotated[:, :, -i-1, :])
inverse_rotated = np.array_equal(self.data_3D[:, i, :, :], np.flip(data_rotated[:, :, i, :], axis=1))
if normal_rotated:
tmp += 1
self.assertTrue(normal_rotated or inverse_rotated)
self.assertTrue(np.array_equal(self.seg_3D[:, i, :, :], seg_rotated[:, :, -i - 1, :]) or
np.array_equal(self.seg_3D[:, i, :, :], np.flip(seg_rotated[:, :, i, :], axis=1)))
def test_randomness_rotation_number(self):
tmp = 0
num_rot = [1, 3]
n_iter = 1000
for j in range(n_iter):
data_rotated, seg_rotated = augment_rot90(np.copy(self.data_3D), np.copy(self.seg_3D), num_rot=num_rot,
axes=[0, 1])
normal_rotated = np.array_equal(self.data_3D[:, 0, :, :], data_rotated[:, :, - 1, :])
if normal_rotated:
tmp += 1
self.assertAlmostEqual(tmp, n_iter / 2., delta=20)
if __name__ == '__main__':
unittest.main()