this is a AM-Softmax tutorial and keras implement. $$ \begin{aligned} L_ams & = -\frac{1}{n}\sum_{i=1}^{n}{\log{\frac{e^{s(\cos\theta_{y_i}-m)}}{e^{s(\cos\theta_{y_i}-m)}+\sum_{j=1,j\neq y_i}^{c}{e^{s\cos\theta_j}}}}} \ & = -\frac{1}{n}\sum_{i=1}^{n}{\log{\frac{e^{s(w_{y_i}^T x_i -m)}}{e^{s(w_{y_i}^T x_i-m)}+\sum_{j=1,j\neq y_i}^{c}{e^{sw_j^T x_i}}}}} \end{aligned} $$
-
Notifications
You must be signed in to change notification settings - Fork 11
hao-qiang/AM-Softmax
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
About
This is an AM-Softmax tutorial and keras implementation.
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published