-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathloss.py
295 lines (255 loc) · 11.1 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
# coding=utf8
import torch
import torch.nn as nn
import numpy as np
from torch.autograd import Variable
import torch.nn.functional as F
from itertools import permutations
import librosa
EPS = 1e-8
def rank_feas(raw_tgt, feas_list, out_type='torch'):
final_num = []
for each_feas, each_line in zip(feas_list, raw_tgt):
for spk in each_line:
final_num.append(each_feas[spk])
if out_type == 'numpy':
return np.array(final_num)
else:
return torch.from_numpy(np.array(final_num))
def criterion(tgt_vocab_size, use_cuda, loss):
weight = torch.ones(tgt_vocab_size)
crit = nn.CrossEntropyLoss(weight, size_average=False)
if use_cuda:
crit.cuda()
return crit
def compute_score(hiddens, targets, metric_fc, score_fc='arc_margin'):
if score_fc in ['add_margin', 'arc_margin', 'sphere']:
scores = metric_fc(hiddens, targets)
elif score_fc == 'linear':
scores = metric_fc(hiddens)
else:
raise ValueError(
"score_fc should be in ['add_margin', 'arc_margin', 'sphere' and 'linear']")
return scores
def cross_entropy_loss(hidden_outputs, targets, criterion, metric_fc, score_fc):
targets = torch.tensor(targets).cuda().view(-1)
scores = compute_score(hidden_outputs, targets, metric_fc, score_fc)
loss = criterion(scores, targets)
pred = scores.max(1)[1]
num_correct = pred.eq(targets).sum()
num_total = targets.size()[0]
loss = loss.div(num_total)
return loss, torch.tensor(num_total).cuda(), torch.tensor(num_correct).cuda()
def ss_loss(config, x_input_map_multi, multi_mask, y_multi_map, loss_multi_func, wav_loss):
predict_multi_map = multi_mask * x_input_map_multi
y_multi_map = Variable(y_multi_map)
loss_multi_speech = loss_multi_func(predict_multi_map, y_multi_map)
return loss_multi_speech
def ss_tas_loss(aim_wav, predicted, mix_length):
loss = cal_loss_with_order(aim_wav, predicted, mix_length)[0]
return loss
def cal_loss_with_order(source, estimate_source, source_lengths):
"""
Args:
source: [B, C, T], B is batch size
estimate_source: [B, C, T]
source_lengths: [B]
"""
max_snr = cal_si_snr_with_order(source, estimate_source, source_lengths)
loss = 0 - torch.mean(max_snr)
return loss,
def cal_loss_with_PIT(source, estimate_source, source_lengths):
"""
Args:
source: [B, C, T], B is batch size
estimate_source: [B, C, T]
source_lengths: [B]
"""
max_snr, perms, max_snr_idx = cal_si_snr_with_pit(source,
estimate_source,
source_lengths)
loss = 0 - torch.mean(max_snr)
reorder_estimate_source = reorder_source(
estimate_source, perms, max_snr_idx)
return loss, max_snr, estimate_source, reorder_estimate_source
def cal_si_snr_with_order(source, estimate_source, source_lengths):
"""Calculate SI-SNR with given order.
Args:
source: [B, C, T], B is batch size
estimate_source: [B, C, T]
source_lengths: [B], each item is between [0, T]
"""
assert source.size() == estimate_source.size()
B, C, T = source.size()
# mask padding position along T
mask = get_mask(source, source_lengths)
estimate_source *= mask
# Step 1. Zero-mean norm
num_samples = source_lengths.view(-1, 1, 1).float() # [B, 1, 1]
mean_target = torch.sum(source, dim=2, keepdim=True) / num_samples
mean_estimate = torch.sum(estimate_source, dim=2,
keepdim=True) / num_samples
zero_mean_target = source - mean_target
zero_mean_estimate = estimate_source - mean_estimate
# mask padding position along T
zero_mean_target *= mask
zero_mean_estimate *= mask
# Step 2. SI-SNR with order
# reshape to use broadcast
s_target = zero_mean_target # [B, C, T]
s_estimate = zero_mean_estimate # [B, C, T]
# s_target = <s', s>s / ||s||^2
pair_wise_dot = torch.sum(s_estimate * s_target,
dim=2, keepdim=True) # [B, C, 1]
s_target_energy = torch.sum(
s_target ** 2, dim=2, keepdim=True) + EPS # [B, C, 1]
pair_wise_proj = pair_wise_dot * s_target / s_target_energy # [B, C, T]
# e_noise = s' - s_target
e_noise = s_estimate - pair_wise_proj # [B, C, T]
# SI-SNR = 10 * log_10(||s_target||^2 / ||e_noise||^2)
pair_wise_si_snr = torch.sum(
pair_wise_proj ** 2, dim=2) / (torch.sum(e_noise ** 2, dim=2) + EPS)
pair_wise_si_snr = 10 * torch.log10(pair_wise_si_snr + EPS) # [B, C]
print(pair_wise_si_snr)
return torch.sum(pair_wise_si_snr, dim=1)/C
def cal_si_snr_with_pit(source, estimate_source, source_lengths):
"""Calculate SI-SNR with PIT training.
Args:
source: [B, C, T], B is batch size
estimate_source: [B, C, T]
source_lengths: [B], each item is between [0, T]
"""
assert source.size() == estimate_source.size()
B, C, T = source.size()
# mask padding position along T
mask = get_mask(source, source_lengths)
estimate_source *= mask
# Step 1. Zero-mean norm
num_samples = source_lengths.view(-1, 1, 1).float() # [B, 1, 1]
mean_target = torch.sum(source, dim=2, keepdim=True) / num_samples
mean_estimate = torch.sum(estimate_source, dim=2,
keepdim=True) / num_samples
zero_mean_target = source - mean_target
zero_mean_estimate = estimate_source - mean_estimate
# mask padding position along T
zero_mean_target *= mask
zero_mean_estimate *= mask
# Step 2. SI-SNR with PIT
# reshape to use broadcast
s_target = torch.unsqueeze(zero_mean_target, dim=1) # [B, 1, C, T]
s_estimate = torch.unsqueeze(zero_mean_estimate, dim=2) # [B, C, 1, T]
# s_target = <s', s>s / ||s||^2
pair_wise_dot = torch.sum(s_estimate * s_target,
dim=3, keepdim=True) # [B, C, C, 1]
s_target_energy = torch.sum(
s_target ** 2, dim=3, keepdim=True) + EPS # [B, 1, C, 1]
pair_wise_proj = pair_wise_dot * s_target / s_target_energy # [B, C, C, T]
# e_noise = s' - s_target
e_noise = s_estimate - pair_wise_proj # [B, C, C, T]
# SI-SNR = 10 * log_10(||s_target||^2 / ||e_noise||^2)
pair_wise_si_snr = torch.sum(
pair_wise_proj ** 2, dim=3) / (torch.sum(e_noise ** 2, dim=3) + EPS)
pair_wise_si_snr = 10 * torch.log10(pair_wise_si_snr + EPS) # [B, C, C]
# Get max_snr of each utterance
# permutations, [C!, C]
perms = source.new_tensor(list(permutations(range(C))), dtype=torch.long)
# one-hot, [C!, C, C]
index = torch.unsqueeze(perms, 2)
# perms_one_hot = source.new_zeros((*perms.size(), C)).scatter_(2, index, 1)
perms_one_hot = source.new_zeros(
(perms.size()[0], perms.size()[1], C)).scatter_(2, index, 1)
# [B, C!] <- [B, C, C] einsum [C!, C, C], SI-SNR sum of each permutation
snr_set = torch.einsum('bij,pij->bp', [pair_wise_si_snr, perms_one_hot])
max_snr_idx = torch.argmax(snr_set, dim=1) # [B]
# max_snr = torch.gather(snr_set, 1, max_snr_idx.view(-1, 1)) # [B, 1]
max_snr, _ = torch.max(snr_set, dim=1, keepdim=True)
max_snr /= C
return max_snr, perms, max_snr_idx
def reorder_source(source, perms, max_snr_idx):
"""
Args:
source: [B, C, T]
perms: [C!, C], permutations
max_snr_idx: [B], each item is between [0, C!)
Returns:
reorder_source: [B, C, T]
"""
# B, C, *_ = source.size()
B, C, __ = source.size()
# [B, C], permutation whose SI-SNR is max of each utterance
# for each utterance, reorder estimate source according this permutation
max_snr_perm = torch.index_select(perms, dim=0, index=max_snr_idx)
# print('max_snr_perm', max_snr_perm)
# maybe use torch.gather()/index_select()/scatter() to impl this?
reorder_source = torch.zeros_like(source)
for b in range(B):
for c in range(C):
reorder_source[b, c] = source[b, max_snr_perm[b][c]]
return reorder_source
def get_mask(source, source_lengths):
"""
Args:
source: [B, C, T]
source_lengths: [B]
Returns:
mask: [B, 1, T]
"""
B, _, T = source.size()
mask = source.new_ones((B, 1, T))
for i in range(B):
mask[i, :, source_lengths[i]:] = 0
return mask
def ss_loss_MLMSE(config, x_input_map_multi, multi_mask, y_multi_map, loss_multi_func, Var):
try:
if Var == None:
Var = Variable(torch.eye(
config.fre_size, config.fre_size).cuda(), requires_grad=0)
print('Set Var to:', Var)
except:
pass
assert Var.size() == (config.fre_size, config.fre_size)
predict_multi_map = torch.mean(
multi_mask * x_input_map_multi, -2)
# predict_multi_map=Variable(y_multi_map)
y_multi_map = torch.mean(Variable(y_multi_map), -2)
loss_vector = (y_multi_map - predict_multi_map).view(-1,
config.fre_size).unsqueeze(1)
Var_inverse = torch.inverse(Var)
Var_inverse = Var_inverse.unsqueeze(0).expand(loss_vector.size()[0], config.fre_size,
config.fre_size)
loss_multi_speech = torch.bmm(
torch.bmm(loss_vector, Var_inverse), loss_vector.transpose(1, 2))
loss_multi_speech = torch.mean(loss_multi_speech, 0)
y_sum_map = Variable(torch.ones(
config.batch_size, config.frame_num, config.fre_size)).cuda()
predict_sum_map = torch.sum(multi_mask, 1)
loss_multi_sum_speech = loss_multi_func(predict_sum_map, y_sum_map)
print('loss 1 eval, losssum eval : ', loss_multi_speech.data.cpu(
).numpy(), loss_multi_sum_speech.data.cpu().numpy())
# loss_multi_speech=loss_multi_speech+0.5*loss_multi_sum_speech
print('evaling multi-abs norm this eval batch:',
torch.abs(y_multi_map - predict_multi_map).norm().data.cpu().numpy())
# loss_multi_speech=loss_multi_speech+3*loss_multi_sum_speech
print('loss for whole separation part:',
loss_multi_speech.data.cpu().numpy())
# return F.relu(loss_multi_speech)
return loss_multi_speech
def dis_loss(config, top_k_num, dis_model, x_input_map_multi, multi_mask, y_multi_map, loss_multi_func):
predict_multi_map = multi_mask * x_input_map_multi
y_multi_map = Variable(y_multi_map).cuda()
score_true = dis_model(y_multi_map)
score_false = dis_model(predict_multi_map)
acc_true = torch.sum(score_true > 0.5).data.cpu(
).numpy() / float(score_true.size()[0])
acc_false = torch.sum(score_false < 0.5).data.cpu(
).numpy() / float(score_true.size()[0])
acc_dis = (acc_false + acc_true) / 2
print('acc for dis:(ture,false,aver)', acc_true, acc_false, acc_dis)
loss_dis_true = loss_multi_func(score_true, Variable(
torch.ones(config.batch_size * top_k_num, 1)).cuda())
loss_dis_false = loss_multi_func(score_false, Variable(
torch.zeros(config.batch_size * top_k_num, 1)).cuda())
loss_dis = loss_dis_true + loss_dis_false
print('loss for dis:(ture,false)', loss_dis_true.data.cpu().numpy(),
loss_dis_false.data.cpu().numpy())
return loss_dis