forked from kyegomez/PALM-E
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
675 lines (542 loc) · 23.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
import math
import multiprocessing
import os
from datetime import timedelta
from functools import partial
from itertools import chain
import torch
# constants
from accelerate import Accelerator
from accelerate.utils import InitProcessGroupKwargs
from datasets import load_dataset
from lion_pytorch import Lion
from palm_rlhf_pytorch.palm import LayerNorm, ParallelTransformerBlock
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointImpl,
apply_activation_checkpointing,
checkpoint_wrapper,
)
from torch.distributed.fsdp import (
BackwardPrefetch,
FullyShardedDataParallel,
MixedPrecision,
ShardingStrategy,
)
from torch.distributed.fsdp.wrap import (
transformer_auto_wrap_policy,
)
from torch.optim import AdamW
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import (
AutoTokenizer,
default_data_collator,
get_cosine_schedule_with_warmup,
get_linear_schedule_with_warmup,
set_seed,
)
from palme.stable_adamw import StableAdamWUnfused
# from palm.utils import print_num_params
from palme.utils import print_num_params
from palme.model import PALME
# setup
import torch.distributed as dist
from accelerate.logging import get_logger
logger = get_logger(__name__, log_level="INFO")
class CFG:
BATCH_SIZE = 1
GRADIENT_ACCUMULATE_EVERY: int = 1
SEED: int = 42
LEARNING_RATE: float = 1e-4 #3e-4 # 1e-4 for lion
WEIGHT_DECAY: float = 0.1
SEQ_LEN: int = 8192
NUM_CPU: int = multiprocessing.cpu_count()
USE_DEEPSPEED: bool = True
USE_FSDP: bool = True
USE_PRETOKENIZED: bool = True
USE_ACTIVATION_CHECKPOINTING: bool = True
RESUME_FROM_CHECKPOINT: str = False
CHECKPOINTING_STEPS: int = 1000
OUTPUT_DIR: str = 'checkpoints/' # Folder
ENTITY_NAME: str = "PALME"
LOGGING_STEPS: int = 100
# helpers
def print_num_params(model, accelerator: Accelerator):
# n_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
n_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
accelerator.print(f"Number of parameters in model: {n_params}")
# activation checkpointing
def activation_checkpointing(
model: torch.nn.Module,
offload_to_cpu: bool = False,
accelerator: Accelerator = None,
):
"""
Apply activation checkpointing to a model.
Args:
model (Module): The model to which to apply activation checkpointing.
offload_to_cpu (bool, optional): Whether to offload the activations to CPU. Defaults to False.
accelerator (Accelerator, optional): The Accelerate library accelerator. Defaults to None.
"""
if accelerator is not None:
accelerator.print("Using activation checkpointing")
def check_fn(submodule):
return isinstance(submodule, ParallelTransformerBlock)
non_reentrant_wrapper = partial(
checkpoint_wrapper,
offload_to_cpu=offload_to_cpu,
checkpoint_impl=CheckpointImpl.NO_REENTRANT,
)
apply_activation_checkpointing(
model, checkpoint_wrapper_fn=non_reentrant_wrapper, check_fn=check_fn
)
# FSDP
def fsdp(
model: torch.nn.Module,
auto_wrap: bool = False,
mp: str = "fp32",
shard_strat: str = "NO_SHARD",
):
"""
This function wraps a given PyTorch model with the FullyShardedDataParallel (FSDP) wrapper to enable efficient data parallelism and model sharding.
Args:
model (torch.nn.Module): The original PyTorch model to be wrapped with FSDP.
auto_wrap (bool, optional): If True, it enables automatic wrapping of the model's layers according to the transformer_auto_wrap_policy. Default is False.
mp (str, optional): The mixed precision mode to be used. Can be 'bf16' for BFloat16, 'fp16' for Float16 or 'fp32' for Float32 precision. Default is 'fp32'.
shard_strat (str, optional): The sharding strategy to be used. Can be 'SHARD_GRAD' for sharding at gradient computation, 'FULL_SHARD' for full model sharding or 'NO_SHARD' for no sharding. Default is 'NO_SHARD'.
Raises:
ValueError: If the provided mp (mixed precision mode) is not 'bf16', 'fp16' or 'fp32'.
ValueError: If the provided shard_strat (sharding strategy) is not 'SHARD_GRAD', 'FULL_SHARD' or 'NO_SHARD'.
Returns:
torch.nn.Module: The input model wrapped with FSDP.
"""
if auto_wrap:
PALME_auto_wrap_policy = partial(
transformer_auto_wrap_policy,
transformer_layer_cls={
ParallelTransformerBlock,
},
)
else:
PALME_auto_wrap_policy = None
if mp == "bf16":
mp_fsdp = MixedPrecision(
param_dtype=torch.bfloat16,
# Gradient communication precision.
reduce_dtype=torch.bfloat16,
# Buffer precision.
buffer_dtype=torch.bfloat16,
)
elif mp == "fp16":
mp_fsdp = MixedPrecision(
param_dtype=torch.float16,
# Gradient communication precision.
reduce_dtype=torch.float16,
# Buffer precision.
buffer_dtype=torch.float16,
)
elif mp == "fp32":
mp_fsdp = MixedPrecision(
param_dtype=torch.float32,
# Gradient communication precision.
reduce_dtype=torch.float32,
# Buffer precision.
buffer_dtype=torch.float32,
)
else:
raise ValueError(
"Invalid scheduler_type. Expected 'bf16', 'fp16' or 'fp32', got: {}".format(
mp
)
)
if shard_strat == "SHARD_GRAD":
sharding_strat_fsdp = ShardingStrategy.SHARD_GRAD_OP
elif shard_strat == "FULL_SHARD":
sharding_strat_fsdp = ShardingStrategy.FULL_SHARD
elif shard_strat == "NO_SHARD":
sharding_strat_fsdp = ShardingStrategy.NO_SHARD
else:
raise ValueError(
"Invalid scheduler_type. Expected 'SHARD_GRAD', 'FULL_SHARD' or 'NO_SHARD', got: {}".format(
shard_strat
)
)
model = FullyShardedDataParallel(
model,
auto_wrap_policy=PALME_auto_wrap_policy,
mixed_precision=mp_fsdp,
backward_prefetch=BackwardPrefetch.BACKWARD_PRE,
sharding_strategy=sharding_strat_fsdp,
forward_prefetch=True,
use_orig_params=True,
)
return model
# learning rate scheduler
def get_lr_scheduler_with_warmup(
optimizer: torch.optim.Optimizer,
scheduler_type: str,
num_warmup_steps: int,
max_train_steps: int,
grad_accumulate_every: int = 1,
accelerator: Accelerator = None,
):
"""
Get a learning rate scheduler with warmup.
Args:
optimizer (Optimizer): The optimizer for which to create the learning rate scheduler.
scheduler_type (str): The type of learning rate scheduler to create, either "linear" or "cosine".
num_warmup_steps (int): The number of warmup steps for the learning rate scheduler.
max_train_steps (int): The maximum number of training steps.
grad_accumulate_every (int, optional): The gradient accumulation factor. Defaults to 1.
accelerator (Accelerator, optional): The Accelerate library accelerator. Defaults to None.
Returns:
The learning rate scheduler with warmup.
Raises:
ValueError: If scheduler_type is not "linear" or "cosine".
"""
NUM_WARMUP_STEPS = num_warmup_steps
GRADIENT_ACCUMULATE_EVERY = grad_accumulate_every
if accelerator is not None:
accelerator.print(f"Using {scheduler_type} lr scheduler")
if scheduler_type == "linear":
return get_linear_schedule_with_warmup(
optimizer=optimizer,
num_warmup_steps=NUM_WARMUP_STEPS * GRADIENT_ACCUMULATE_EVERY,
num_training_steps=max_train_steps * GRADIENT_ACCUMULATE_EVERY,
)
elif scheduler_type == "cosine":
return get_cosine_schedule_with_warmup(
optimizer=optimizer,
num_warmup_steps=NUM_WARMUP_STEPS * GRADIENT_ACCUMULATE_EVERY,
num_training_steps=max_train_steps * GRADIENT_ACCUMULATE_EVERY,
)
else:
raise ValueError(
"Invalid scheduler_type. Expected 'linear' or 'cosine', got: {}".format(
scheduler_type
)
)
# optimizers
def decoupled_optimizer(
model: torch.nn.Module,
learning_rate: float,
weight_decay: float,
beta_1: float,
beta_2: float,
optimizer_type: str,
use_fsdp: bool = True,
accelerator: Accelerator = None,
):
"""
Decouples the optimizer from the training process.
This function sets up the optimizer for the model by creating two groups of parameters:
one for weight decay and one without weight decay. Then, it initializes the optimizer
with these two groups of parameters.
Args:
model (Module): The model whose parameters are optimized.
learning_rate (float): The learning rate for the optimizer.
weight_decay (float): The weight decay for the optimizer.
beta_1 (float): The exponential decay rate for the 1st moment estimates.
beta_2 (float): The exponential decay rate for the 2nd moment estimates.
optimizer_type (str): The type of the optimizer. Can be 'lion', 'adamw', or 'stable_adamw'.
use_fsdp (bool, optional): If True, the optimizer will work with fully sharded data parallelism. Defaults to True.
accelerator (Accelerator, optional): The accelerator from HuggingFace's Accelerate library. Defaults to None.
Returns:
Optimizer: The initialized optimizer.
Raises:
ValueError: If the optimizer type is not 'lion', 'adamw' or 'stable_adamw'.
"""
accelerator.print(f"Using {optimizer_type} optimizer")
# Create an empty dictionary called param_dict to store the model's named parameters.
param_dict = {}
# Iterate over the model's named parameters and populate the param_dict with key-value pairs.
for param_name, param in model.named_parameters():
param_dict[param_name] = param
# Separate the model's named modules into two groups: decay and no_decay.
# Create an empty list to store the names of the LayerNorm and Embedding layer weights with no weight decay.
no_decay = []
if use_fsdp:
exclude_module = "_fsdp_wrapped_module.token_emb"
else:
exclude_module = "token_emb"
# Iterate through the named modules of the model.
for module_name, module in model.named_modules():
# Check if the current module is an instance of any of the desired types (LayerNorm or torch.nn.Embedding).
for ndim in [LayerNorm, torch.nn.Embedding]:
if isinstance(module, ndim):
# If torch.nn.Embedding, append its name with a ".weight" suffix to the no_decay list.
if module_name == exclude_module:
no_decay.append(f"{module_name}.weight")
else:
# If the module is an instance of LayerNorm
no_decay.append(f"{module_name}.gamma")
# Exit the inner loop since the desired module has been found.
break
# Create an empty list to store the names of the Linear layer weights with weight decay.
decay = []
# Iterate through the named modules of the model.
for module_name, module in model.named_modules():
# Check if the current module is an instance of the desired type (torch.nn.Linear).
for ndim in [torch.nn.Linear]:
if isinstance(module, ndim):
# If the module is an instance of torch.nn.Linear, append its name with a ".weight" suffix to the decay list.
decay.append(f"{module_name}.weight")
# Exit the inner loop since the desired module has been found.
break
# Create two separate lists of model parameters: decay_param and no_decay_param.
# The decay_param list contains the parameters that should have weight decay applied.
# The no_decay_param list contains the parameters that should not have weight decay applied, excluding the 'to_logits.weight' parameter.
# Create an empty list called decay_param to store the parameters with weight decay.
decay_param = []
if use_fsdp:
exclude_param = "_fsdp_wrapped_module.to_logits.weight"
else:
exclude_param = "to_logits.weight"
# Iterate over the decay list, which contains the names of the parameters with weight decay.
for param in decay:
# Check if the current parameter is not 'to_logits.weight'.
# Append the corresponding parameter from param_dict to the decay_param list.
if param != exclude_param:
decay_param.append(param_dict[param])
# Create an empty list called no_decay_param to store the parameters without weight decay.
no_decay_param = []
# Iterate over the no_decay list, which contains the names of the parameters without weight decay.
for param in no_decay:
try:
# Append the corresponding parameter from param_dict to the no_decay_param list.
no_decay_param.append(param_dict[param])
except KeyError:
# print(f"Parameter {param_name} does not exist in the model")
pass
# Create a list called grouped_params that contains two dictionaries.
# The first dictionary has the decay_param list and the corresponding weight_decay value.
# The second dictionary has the no_decay_param list and a weight_decay value of 0.0.
grouped_params = [
{"params": decay_param, "weight_decay": weight_decay},
{"params": no_decay_param, "weight_decay": 0.0},
]
# Create a variable called optimizer that stores an instance of the optimizer.
if optimizer_type == "lion":
optimizer = Lion(grouped_params, lr=learning_rate, betas=(beta_1, beta_2),)
elif optimizer_type == "adamw":
optimizer = AdamW(grouped_params, lr=learning_rate, betas=(beta_1, beta_2),)
# elif optimizer_type == "deepspeed":
# optimizer = DummyOptim(grouped_params, lr=learning_rate, betas=(beta_1, beta_2),)
elif optimizer_type == "stable_adamw":
optimizer = StableAdamWUnfused(
grouped_params, lr=learning_rate, betas=(beta_1, beta_2),
)
# elif optimizer_type=="Adam8bit":
# optimizer = bnb.optim.Adam8bit(grouped_params, lr=learning_rate, betas=(beta_1, beta_2))
# elif optimizer_type=="Lion8Bit":
# optimizer = bnb.optim.Lion8bit(grouped_params, lr=learning_rate, betas=(beta_1, beta_2))
else:
raise ValueError(
"Invalid optimizer_type. Expected 'lion', 'adamw', 'deepspeed' or 'stable_adamw', got: {}".format(
optimizer_type
)
)
# Return the optimizer.
return optimizer
# dataloaders
def build_dataloaders():
"""
Build data loaders for training.
This function performs the following steps:
1. Load the tokenizer from the pretrained "EleutherAI/gpt-neox-20b" model.
2. Load the "openwebtext" dataset.
3. Tokenize the dataset, adding the end-of-sentence token to each text.
4. Process the tokenized dataset into chunks of a specified block size.
Returns:
Dataset: The processed dataset ready for training.
"""
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b")
dataset = load_dataset("openwebtext", split="train")
tokenized_dataset = dataset.map(
lambda example: tokenizer([t + tokenizer.eos_token for t in example["text"]]),
batched=True,
num_proc=CFG.NUM_CPU,
remove_columns=["text"],
)
block_size = CFG.SEQ_LEN
# Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size.
def group_texts(examples):
# Concatenate all texts.
concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
total_length = len(concatenated_examples[list(examples.keys())[0]])
# We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
# customize this part to your needs.
if total_length >= block_size:
total_length = (total_length // block_size) * block_size
# Split by chunks of max_len.
result = {
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
for k, t in concatenated_examples.items()
}
return result
train_dataset = tokenized_dataset.map(
group_texts, batched=True, num_proc=CFG.NUM_CPU,
)
return train_dataset
#switch to falconwebdataset
def build_pre_tokenized():
d0 = load_dataset("conceptofmind/c4_0-to-20_neox_with_eos_8k", split="train[:10]")
# d1 = load_dataset("conceptofmind/c4_21-to-40_neox_with_eos_8k", split="train")
# d2 = load_dataset("conceptofmind/c4_41-to-60_neox_with_eos_8k", split="train")
# d3 = load_dataset("conceptofmind/c4_61-to-80_neox_with_eos_8k", split="train")
# d4 = load_dataset("conceptofmind/c4_81-to-100_neox_with_eos_8k", split="train")
# train_dataset = concatenate_datasets([d0, d1, d2, d3, d4])
return d0
def Train():
# accelerator
timeout = InitProcessGroupKwargs(timeout=timedelta(seconds=1_000_000))
accelerator = Accelerator(
gradient_accumulation_steps=CFG.GRADIENT_ACCUMULATE_EVERY,
mixed_precision="fp16",
log_with="wandb",
kwargs_handlers=[timeout],
)
# state = AcceleratorState()
# state.deepspeed_plugin.deepspeed_config['train_micro_batch_size_per_gpu'] = CFG.BATCH_SIZE #??????
accelerator.init_trackers(
project_name="PALME",
config={
"batch_size": CFG.BATCH_SIZE,
"gradient_accumulate_every": CFG.GRADIENT_ACCUMULATE_EVERY,
"learning_rate": CFG.LEARNING_RATE,
"seq_len": CFG.SEQ_LEN,
},
# init_kwargs={"wandb": {"entity": CFG.ENTITY_NAME}},
)
accelerator.print(f"Total GPUS: {accelerator.num_processes}")
# set seed
set_seed(CFG.SEED)
model = PALME()
print_num_params(model, accelerator)
if CFG.USE_FSDP:
model = fsdp(
model,
mp="fp16",
shard_strat="SHARD_GRAD"
)
if CFG.USE_ACTIVATION_CHECKPOINTING:
activation_checkpointing(model, accelerator)
model = accelerator.prepare(model)
# dataloaders
if CFG.USE_PRETOKENIZED:
train_dataset = build_pre_tokenized()
else:
train_dataset = build_dataloaders()
train_loader = DataLoader(
train_dataset, batch_size=CFG.BATCH_SIZE, collate_fn=default_data_collator,
)
# optimizer
optim = decoupled_optimizer(
model=model,
learning_rate=CFG.LEARNING_RATE,
weight_decay=CFG.WEIGHT_DECAY,
beta_1=0.90,
beta_2=0.95,
optimizer_type='lion',
use_fsdp=True,
accelerator=accelerator
)
# Determine number of training steps
max_train_steps = math.ceil(len(train_loader) / CFG.GRADIENT_ACCUMULATE_EVERY)
accelerator.print(f"Max train steps: {max_train_steps}")
# lr scheduler
NUM_WARMUP_STEPS = int(max_train_steps * 0.01)
accelerator.print(f"Num warmup steps: {NUM_WARMUP_STEPS}")
lr_scheduler = get_lr_scheduler_with_warmup(
optimizer=optim,
scheduler_type="cosine",
num_warmup_steps=NUM_WARMUP_STEPS,
max_train_steps=max_train_steps,
grad_accumulate_every=CFG.GRADIENT_ACCUMULATE_EVERY,
)
# prepare
optim, train_loader, lr_scheduler = accelerator.prepare(
optim, train_loader, lr_scheduler
)
# checkpoint scheduler
accelerator.register_for_checkpointing(lr_scheduler)
# I do not know why Huggingface recommends recalculation of max_train_steps
max_train_steps = math.ceil(len(train_loader) / CFG.GRADIENT_ACCUMULATE_EVERY)
accelerator.print(f"Max train steps recalculated: {max_train_steps}")
# Total batch size for logging
total_batch_size = (
CFG.BATCH_SIZE * accelerator.num_processes * CFG.GRADIENT_ACCUMULATE_EVERY
)
accelerator.print(f"Total batch size: {total_batch_size}")
# resume training
progress_bar = tqdm(
range(max_train_steps), disable=not accelerator.is_local_main_process
)
completed_steps = 0
if CFG.RESUME_FROM_CHECKPOINT:
if CFG.RESUME_FROM_CHECKPOINT is not None or CFG.RESUME_FROM_CHECKPOINT != "":
accelerator.print(f"Resuming from checkpoint {CFG.RESUME_FROM_CHECKPOINT}")
accelerator.load_state(CFG.RESUME_FROM_CHECKPOINT)
path = os.path.basename(CFG.RESUME_FROM_CHECKPOINT)
training_difference = os.path.splitext(path)[0]
# need to multiply `gradient_accumulation_steps` to reflect real steps
resume_step = (
int(training_difference.replace("step_", ""))
* CFG.GRADIENT_ACCUMULATE_EVERY
)
if CFG.RESUME_FROM_CHECKPOINT and resume_step is not None:
train_loader = accelerator.skip_first_batches(train_loader, resume_step)
completed_steps += resume_step
progress_bar.update(resume_step)
# training
model.train()
for step, batch in enumerate(train_loader):
with accelerator.accumulate(model):
inputs = batch["input_ids"].to(accelerator.device)
loss = model(inputs, return_loss=True)
accelerator.backward(loss)
accelerator.log({"loss": loss.item()}, step=step)
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(model.parameters(), 1.0)
optim.step()
lr_scheduler.step()
optim.zero_grad()
if accelerator.sync_gradients:
progress_bar.update(1)
completed_steps += 1
if isinstance(CFG.CHECKPOINTING_STEPS, int):
if completed_steps % CFG.CHECKPOINTING_STEPS == 0:
output_dir = f"step_{completed_steps }"
if CFG.OUTPUT_DIR is not None:
output_dir = os.path.join(CFG.OUTPUT_DIR, output_dir)
accelerator.save_state(output_dir)
if completed_steps >= max_train_steps:
break
#logging every CFG.LOGGING STEPS
if CFG.LOGGING_STEPS > 0 and step % CFG.LOGGING_STEPS == 0:
logger.info(
f"Step: {completed_steps}/{max_train_steps}, Loss: {loss.item():.5f}"
)
# end training
# accelerator.print(f"Training Finished")
accelerator.end_training()
# save final model
# accelerator.print(f"Saving model to {CFG.OUTPUT_DIR}")
if CFG.OUTPUT_DIR is not None:
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
with accelerator.main_process_first():
accelerator.save(
unwrapped_model.state_dict(), f"{CFG.OUTPUT_DIR}/final/final_model.pt"
)
def main():
os.environ['MASTER_ADDR'] #'localhost'
os.environ['MASTER_PORT'] #= '9994'
# # [CRITICAL] Pay attention to this when scaling to multiple GPUs and clusters
# # Pay attention to this, use "accelerate config"
os.environ['RANK'] #= str(0) # Number of nodes (servers)
os.environ['WORLD_SIZE'] # = str(torch.cuda.device_count())
dist.init_process_group(backend='nccl') #init_method="env://")
Train()
if __name__ == '__main__':
main()