-
Notifications
You must be signed in to change notification settings - Fork 0
/
410-SplitArrayLargestSum.swift
53 lines (42 loc) · 1.62 KB
/
410-SplitArrayLargestSum.swift
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
// Given an array which consists of non-negative integers and an integer m, you can split the array into m non-empty continuous subarrays. Write an algorithm to minimize the largest sum among these m subarrays.
// Note:
// If n is the length of array, assume the following constraints are satisfied:
// 1 ≤ n ≤ 1000
// 1 ≤ m ≤ min(50, n)
// Examples:
// Input:
// nums = [7,2,5,10,8]
// m = 2
// Output:
// 18
// Explanation:
// There are four ways to split nums into two subarrays.
// The best way is to split it into [7,2,5] and [10,8],
// where the largest sum among the two subarrays is only 18.
// DP with O(mn^2) time complexity
func splitArray(_ nums: [Int], _ m: Int) -> Int {
// Calculate pre sum
var sum = 0
let preSum = nums.map { i -> Int in
sum += i
return sum
}
// Answer of sub problems
// dp[i][j] = min of the largest sum when dividing nums[0...j] into i groups
// 0 <= j < nums.count, 1 <= i <= m
var dp = [[Int]](repeating: [Int](repeating: Int.max, count: nums.count),
count: m + 1)
// Divide into 1 group is just the preSum itself
dp[1] = preSum
for i in 1...m {
for j in 0..<nums.count {
// Solve for first k numbers in nums[0...j]
for k in 0..<j {
dp[i][j] = min(dp[i][j],
max(dp[i - 1][k], // 1st part: solution for nums[0...k] in i - 1 groups
preSum[j] - preSum[k])) // 2nd part: sum of nums[k + 1...j]
}
}
}
return dp[m][nums.count - 1]
}