- Windows, Linux(Recommend)
- Python 3.7+
- PyTorch ≥ 1.7
- CUDA 9.0 or higher
I have tested the following versions of OS and softwares:
- OS:Ubuntu 16.04/18.04
- CUDA: 10.0/10.1/10.2/11.3
a. Create a conda virtual environment and activate it, e.g.,
conda create -n Py39_Torch1.10_cu11.3 python=3.9 -y
source activate Py39_Torch1.10_cu11.3
b. Make sure your CUDA runtime api version ≤ CUDA driver version. (for example 11.3 ≤ 11.4)
nvcc -V
nvidia-smi
c. Install PyTorch and torchvision following the official instructions, Make sure cudatoolkit version same as CUDA runtime api version, e.g.,
pip3 install torch==1.10.1+cu113 torchvision==0.11.2+cu113 torchaudio==0.10.1+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html
nvcc -V
python
>>> import torch
>>> torch.version.cuda
>>> exit()
d. Clone the yolov5-obb repository.
git clone https://github.com/hukaixuan19970627/yolov5_obb.git
cd yolov5_obb
e. Install yolov5-obb.
pip install -r requirements.txt
cd utils/nms_rotated
python setup.py develop #or "pip install -v -e ."
Install DOTA_devkit. (Custom Install, it's just a tool to split the high resolution image and evaluation the obb)
cd yolov5_obb/DOTA_devkit
sudo apt-get install swig
swig -c++ -python polyiou.i
python setup.py build_ext --inplace
parent
├── yolov5
└── datasets
└── DOTAv1.5
├── train_split_rate1.0_subsize1024_gap200
├── train_split_rate1.0_subsize1024_gap200
└── test_split_rate1.0_subsize1024_gap200
├── images
└── labelTxt
Note:
- DOTA is a high resolution image dataset, so it must be splited before training to get a better performance.