Skip to content

Latest commit

 

History

History
69 lines (61 loc) · 1.81 KB

install.md

File metadata and controls

69 lines (61 loc) · 1.81 KB

INSTAllation

Requirements

  • Windows, Linux(Recommend)
  • Python 3.7+
  • PyTorch ≥ 1.7
  • CUDA 9.0 or higher

I have tested the following versions of OS and softwares:

  • OS:Ubuntu 16.04/18.04
  • CUDA: 10.0/10.1/10.2/11.3

Install

a. Create a conda virtual environment and activate it, e.g.,

conda create -n Py39_Torch1.10_cu11.3 python=3.9 -y 
source activate Py39_Torch1.10_cu11.3

b. Make sure your CUDA runtime api version ≤ CUDA driver version. (for example 11.3 ≤ 11.4)

nvcc -V
nvidia-smi

c. Install PyTorch and torchvision following the official instructions, Make sure cudatoolkit version same as CUDA runtime api version, e.g.,

pip3 install torch==1.10.1+cu113 torchvision==0.11.2+cu113 torchaudio==0.10.1+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html
nvcc -V
python
>>> import torch
>>> torch.version.cuda
>>> exit()

d. Clone the yolov5-obb repository.

git clone https://github.com/hukaixuan19970627/yolov5_obb.git
cd yolov5_obb

e. Install yolov5-obb.

pip install -r requirements.txt
cd utils/nms_rotated
python setup.py develop  #or "pip install -v -e ."

Install DOTA_devkit. (Custom Install, it's just a tool to split the high resolution image and evaluation the obb)

cd yolov5_obb/DOTA_devkit
sudo apt-get install swig
swig -c++ -python polyiou.i
python setup.py build_ext --inplace

Prepare dataset

parent
├── yolov5
└── datasets
    └── DOTAv1.5
        ├── train_split_rate1.0_subsize1024_gap200
        ├── train_split_rate1.0_subsize1024_gap200
        └── test_split_rate1.0_subsize1024_gap200
            ├── images
            └── labelTxt

Note:

  • DOTA is a high resolution image dataset, so it must be splited before training to get a better performance.