forked from myreader-io/myGPTReader
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathserver.py
258 lines (221 loc) · 9.59 KB
/
server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
from urllib.parse import urlparse
from flask import Flask, request
import re
import os
import hashlib
import openai
import feedparser
import validators
import html2text
import json
from slack_bolt import App
import requests
from slack_bolt.adapter.flask import SlackRequestHandler
from llama_index import GPTChromaIndex, LLMPredictor, RssReader
from llama_index.readers.schema.base import Document
from llama_index.prompts.prompts import QuestionAnswerPrompt
from llama_index import LangchainEmbedding
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from langchain.chat_models import ChatOpenAI
from chromadb.config import Settings
import concurrent.futures
import fnmatch
import chromadb
executor = concurrent.futures.ThreadPoolExecutor(max_workers=20)
app = Flask(__name__)
OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY')
openai.api_key = OPENAI_API_KEY
CF_ACCESS_CLIENT_ID = os.environ.get('CF_ACCESS_CLIENT_ID')
CF_ACCESS_CLIENT_SECRET = os.environ.get('CF_ACCESS_CLIENT_SECRET')
PHANTOMJSCLOUD_API_KEY = os.environ.get('PHANTOMJSCLOUD_API_KEY')
PHANTOMJSCLOUD_WEBSITES = ['https://twitter.com/', 'https://t.co/', 'https://medium.com/', 'https://app.mailbrew.com/', 'https://us12.campaign-archive.com', 'https://news.ycombinator.com', 'https://www.bloomberg.com', 'https://*.substack.com/']
chroma_client = chromadb.Client(Settings(
chroma_db_impl="duckdb+parquet",
persist_directory="/data/myGPTReader/chroma_db",
))
embed_model = LangchainEmbedding(HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2"))
slack_app = App(
token=os.environ.get("SLACK_TOKEN"),
signing_secret=os.environ.get("SLACK_SIGNING_SECRET")
)
slack_handler = SlackRequestHandler(slack_app)
@app.route("/slack/events", methods=["POST"])
def slack_events():
return slack_handler.handle(request)
def insert_space(text):
# Handling the case between English words and Chinese characters
text = re.sub(r'([a-zA-Z])([\u4e00-\u9fa5])', r'\1 \2', text)
text = re.sub(r'([\u4e00-\u9fa5])([a-zA-Z])', r'\1 \2', text)
# Handling the situation between numbers and Chinese
text = re.sub(r'(\d)([\u4e00-\u9fa5])', r'\1 \2', text)
text = re.sub(r'([\u4e00-\u9fa5])(\d)', r'\1 \2', text)
# handling the special characters
text = re.sub(r'([\W_])([\u4e00-\u9fa5])', r'\1 \2', text)
text = re.sub(r'([\u4e00-\u9fa5])([\W_])', r'\1 \2', text)
text = text.replace(' ', ' ')
return text
def check_if_need_use_phantomjscloud(url):
for site in PHANTOMJSCLOUD_WEBSITES:
if '*' in site:
if fnmatch.fnmatch(url, site):
return True
elif url.startswith(site):
return True
return False
def get_urls(urls):
rss_urls = []
page_urls = []
phantomjscloud_urls = []
for url in urls:
if validators.url(url):
feed = feedparser.parse(url)
if feed.version:
rss_urls.append(url)
elif check_if_need_use_phantomjscloud(url):
phantomjscloud_urls.append(url)
else:
page_urls.append(url)
return {'rss_urls': rss_urls, 'page_urls': page_urls, 'phantomjscloud_urls': phantomjscloud_urls}
def format_text(text):
text_without_html_tag = html2text.html2text(text)
fix_chinese_split_chunk_size_error = text_without_html_tag.replace(',', ', ')
return fix_chinese_split_chunk_size_error
def scrape_website(url: str) -> str:
endpoint_url = f"https://web-scraper.i365.tech/?url={url}&selector=div"
headers = {
'CF-Access-Client-Id': CF_ACCESS_CLIENT_ID,
'CF-Access-Client-Secret': CF_ACCESS_CLIENT_SECRET,
}
response = requests.get(endpoint_url, headers=headers)
if response.status_code == 200:
try:
json_response = response.json()
tag_array = json_response['result']['div']
text = ''.join(tag_array)
return format_text(text)
except:
return "Error: Unable to parse JSON response"
else:
return f"Error: {response.status_code} - {response.reason}"
def scrape_website_by_phantomjscloud(url: str) -> str:
endpoint_url = f"https://PhantomJsCloud.com/api/browser/v2/{PHANTOMJSCLOUD_API_KEY}/"
data ={
"url": url,
"renderType" : "plainText",
"requestSettings":{
"doneWhen":[
{
"event": "domReady"
},
],
}
}
response = requests.post(endpoint_url, data=json.dumps(data))
if response.status_code == 200:
try:
return response.content.decode('utf-8')
except:
return "Error: Unable to fetch content"
else:
return f"Error: {response.status_code} - {response.reason}"
def get_documents_from_urls(urls):
documents = []
for url in urls['page_urls']:
document = Document(scrape_website(url))
documents.append(document)
if len(urls['rss_urls']) > 0:
rss_documents = RssReader().load_data(urls['rss_urls'])
documents = documents + rss_documents
if len(urls['phantomjscloud_urls']) > 0:
for url in urls['phantomjscloud_urls']:
document = Document(scrape_website_by_phantomjscloud(url))
documents.append(document)
return documents
def get_unique_md5(urls):
urls_str = ''.join(sorted(urls))
hashed_str = hashlib.md5(urls_str.encode('utf-8')).hexdigest()
return hashed_str
def format_dialog_messages(messages):
return "\n".join(messages)
def get_answer_from_chatGPT(messages, logger):
dialog_messages = format_dialog_messages(messages)
logger.info('=====> Use chatGPT to answer!')
logger.info(dialog_messages)
completion = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": dialog_messages}]
)
logger.info(completion.usage)
return completion.choices[0].message.content
QUESTION_ANSWER_PROMPT_TMPL = (
"Context information is below. \n"
"---------------------\n"
"{context_str}"
"\n---------------------\n"
"{query_str}\n"
)
QUESTION_ANSWER_PROMPT = QuestionAnswerPrompt(QUESTION_ANSWER_PROMPT_TMPL)
def get_answer_from_llama_web(messages, urls, logger):
dialog_messages = format_dialog_messages(messages)
logger.info('=====> Use llama with chatGPT to answer!')
logger.info(dialog_messages)
combained_urls = get_urls(urls)
logger.info(combained_urls)
documents = get_documents_from_urls(combained_urls)
llm_predictor = LLMPredictor(llm=ChatOpenAI(temperature=0.2, model_name="gpt-3.5-turbo"))
logger.info(documents)
chroma_collection = chroma_client.get_or_create_collection(get_unique_md5(urls))
index = GPTChromaIndex(documents, chroma_collection=chroma_collection, embed_model=embed_model)
return index.query(dialog_messages, llm_predictor=llm_predictor, text_qa_template=QUESTION_ANSWER_PROMPT)
thread_message_history = {}
MAX_THREAD_MESSAGE_HISTORY = 10
def update_thread_history(thread_ts, message_str, urls=None):
if urls is not None:
thread_message_history[thread_ts]['context_urls'].update(urls)
if thread_ts in thread_message_history:
dialog_texts = thread_message_history[thread_ts]['dialog_texts']
dialog_texts.append(message_str)
if len(dialog_texts) > MAX_THREAD_MESSAGE_HISTORY:
dialog_texts = dialog_texts[-MAX_THREAD_MESSAGE_HISTORY:]
thread_message_history[thread_ts]['dialog_texts'] = dialog_texts
else:
thread_message_history[thread_ts]['dialog_texts'] = [message_str]
def extract_urls_from_event(event):
urls = set()
for block in event['blocks']:
for element in block['elements']:
for e in element['elements']:
if e['type'] == 'link':
url = urlparse(e['url']).geturl()
urls.add(url)
return list(urls)
@slack_app.event("app_mention")
def handle_mentions(event, say, logger):
user = event["user"]
thread_ts = event["ts"]
parent_thread_ts = event["thread_ts"] if "thread_ts" in event else thread_ts
if parent_thread_ts not in thread_message_history:
thread_message_history[parent_thread_ts] = { 'dialog_texts': [], 'context_urls': set()}
if "text" in event:
update_thread_history(parent_thread_ts, 'User: %s' % insert_space(event["text"].replace('<@U04TCNR9MNF>', '')), extract_urls_from_event(event))
urls = thread_message_history[parent_thread_ts]['context_urls']
logger.info('=====> Current thread conversation messages are:')
logger.info(thread_message_history[parent_thread_ts])
# TODO: https://github.com/jerryjliu/llama_index/issues/778
# if it can get the context_str, then put this prompt into the thread_message_history to provide more context to the chatGPT
if len(extract_urls_from_event(event)) > 0: # if this conversation has urls, use llama with all urls in this thread
future = executor.submit(get_answer_from_llama_web, thread_message_history[parent_thread_ts]['dialog_texts'], list(urls), logger)
else:
future = executor.submit(get_answer_from_chatGPT, thread_message_history[parent_thread_ts]['dialog_texts'], logger)
try:
gpt_response = future.result(timeout=300)
update_thread_history(parent_thread_ts, 'AI: %s' % insert_space(f'{gpt_response}'))
logger.info(gpt_response)
say(f'<@{user}>, {gpt_response}', thread_ts=thread_ts)
except concurrent.futures.TimeoutError:
future.cancel()
err_msg = 'Task timedout(5m) and was canceled.'
logger.warning(err_msg)
say(f'<@{user}>, {err_msg}', thread_ts=thread_ts)
if __name__ == '__main__':
app.run(debug=True)