forked from yeyupiaoling/PPASR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
47 lines (43 loc) · 2.92 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import argparse
import functools
from ppasr import SUPPORT_MODEL
from ppasr.trainer import PPASRTrainer
from ppasr.utils.utils import add_arguments, print_arguments
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
add_arg('use_model', str, 'deepspeech2', '所使用的模型', choices=SUPPORT_MODEL)
add_arg('feature_method', str, 'linear', '音频预处理方法', choices=['linear', 'mfcc', 'fbank'])
add_arg('batch_size', int, 32, '训练的批量大小')
add_arg('num_workers', int, 8, '读取数据的线程数量')
add_arg('num_epoch', int, 65, '训练的轮数')
add_arg('learning_rate', float, 5e-5, '初始学习率的大小')
add_arg('min_duration', float, 0.5, '过滤最短的音频长度')
add_arg('max_duration', int, 20, '过滤最长的音频长度,当为-1的时候不限制长度')
add_arg('train_manifest', str, 'dataset/manifest.train', '训练数据的数据列表路径')
add_arg('test_manifest', str, 'dataset/manifest.test', '测试数据的数据列表路径')
add_arg('dataset_vocab', str, 'dataset/vocabulary.txt', '数据字典的路径')
add_arg('mean_std_path', str, 'dataset/mean_std.json', '均值和标准值得json文件路径,后缀 (.json).')
add_arg('augment_conf_path',str, 'conf/augmentation.json', '数据增强的配置文件,为json格式')
add_arg('save_model_path', str, 'models/', '模型保存的路径')
add_arg('metrics_type', str, 'cer', '计算错误率方法', choices=['cer', 'wer'])
add_arg('resume_model', str, None, '恢复训练,当为None则不使用预训练模型')
add_arg('pretrained_model', str, None, '预训练模型的路径,当为None则不使用预训练模型')
args = parser.parse_args()
print_arguments(args)
trainer = PPASRTrainer(use_model=args.use_model,
feature_method=args.feature_method,
mean_std_path=args.mean_std_path,
train_manifest=args.train_manifest,
test_manifest=args.test_manifest,
dataset_vocab=args.dataset_vocab,
num_workers=args.num_workers,
metrics_type=args.metrics_type)
trainer.train(batch_size=args.batch_size,
min_duration=args.min_duration,
max_duration=args.max_duration,
num_epoch=args.num_epoch,
learning_rate=args.learning_rate,
save_model_path=args.save_model_path,
resume_model=args.resume_model,
pretrained_model=args.pretrained_model,
augment_conf_path=args.augment_conf_path)