-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathassessment.py
343 lines (230 loc) · 10.9 KB
/
assessment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
'''Script for the automatic assessment of the intonation of monophonic singing.
Prototype for the CSP of the TROMPA project.
'''
import sys
eps = sys.float_info.epsilon
import os
import json
import numpy as np
import mir_eval
import pandas as pd
import music21 as m21
import pretty_midi
import unidecode
from mir_eval.util import midi_to_hz, intervals_to_samples
import argparse
import urllib.request
def xml2midi(xmlfile):
try:
score = m21.converter.parseFile(xmlfile)
except:
raise ValueError("Can not parse the score. Aborting assessment...")
if xmlfile.endswith('xml'):
score.write('midi', xmlfile.replace('xml', 'mid'))
elif xmlfile.endswith('mxl'):
score.write('midi', xmlfile.replace('mxl', 'mid'))
else:
raise ValueError("Please input a valid score format: xml or mxl")
def midi_preparation(midifile):
midi_data = dict()
midi_data['onsets'] = dict()
midi_data['offsets'] = dict()
midi_data['midipitches'] = dict() # midi notes?
midi_data['hz'] = dict()
patt = pretty_midi.PrettyMIDI(midifile)
midi_data['downbeats'] = patt.get_downbeats()
for instrument in patt.instruments:
midi_data['onsets'][instrument.name] = []
midi_data['offsets'][instrument.name] = []
midi_data['midipitches'][instrument.name] = []
for note in instrument.notes:
midi_data['onsets'][instrument.name].append(note.start)
midi_data['offsets'][instrument.name].append(note.end)
midi_data['midipitches'][instrument.name].append(note.pitch)
p = midi_data['midipitches'][instrument.name]
midi_data['hz'][instrument.name] = midi_to_hz(np.array(p))
return midi_data
def midi_to_trajectory(des_timebase, onsets, offsets, pitches):
hop = des_timebase[2] - des_timebase[1]
intervals = np.concatenate([np.array(onsets)[:, None], np.array(offsets)[:, None]], axis=1)
timebase, midipitches = intervals_to_samples(intervals, list(pitches),
offset=des_timebase[0], sample_size=hop, fill_value=0)
return np.array(timebase), np.array(midipitches)
def parse_midi(score_fname, voice_shortcut):
voice_shortcut = unidecode.unidecode(voice_shortcut)
if score_fname.endswith('xml'):
midi_data = midi_preparation(score_fname.replace('xml', 'mid'))
elif score_fname.endswith('mxl'):
midi_data = midi_preparation(score_fname.replace('mxl', 'mid'))
else:
raise ValueError("Invalid score format. Found {} but expected {} or {}".format(score_fname[-3:], 'xml', 'mxl'))
onsets = np.array(midi_data['onsets'][voice_shortcut])
offsets = np.array(midi_data['offsets'][voice_shortcut])
pitches = np.array(midi_data['hz'][voice_shortcut])
return onsets, offsets, pitches, midi_data
def load_json_data(load_path):
with open(load_path, 'r') as fp:
data = json.load(fp)
return data
def save_json_data(data, save_path):
with open(save_path, 'w') as fp:
json.dump(data, fp, indent=2)
def load_f0_contour(pitch_json_path, starttime):
pitch = np.array(load_json_data(pitch_json_path)['pitch'])
times_ = pitch[:, 0]
freqs_ = pitch[:, 1]
times_shift = times_ - np.abs(starttime)
idxs_no = np.max(np.where(times_shift < 0)[0])
times = times_shift[idxs_no + 1:]
if not type(times[0]) == np.float64:
raise ValueError("Problem with F0 contour")
if times[0] != 0:
offs = times[0]
times -= offs
freqs = freqs_[idxs_no + 1:]
return times, freqs
def map_deviation_range(input_deviation, max_deviation=100):
'''This function takes as input the deviation between the score and the performance in cents (as a ratio),
and computes the output value mapping it into the range 0-1, (0 is bad intonation and 1 is good intonation).
By default, we limit the deviation to max_deviation cents, which is one semitone. Values outside the range +-100 cents
will be clipped and counted as intonation score = 0.
'''
score = np.clip(np.abs(input_deviation), 0, max_deviation) / float(max_deviation)
# assert score <= 1, "Score value is above 1"
# assert score >= 0, "Score value is below 0"
return 1 - score
def intonation_assessment(startbar, endbar, offset, pitch_json_file, score_file, voice, output_filename, dev_thresh=100):
'''Automatic assessment of the intonation of singing performances from the CSP platform of the TROMPA project.
Parameters
----------
startbar : (int) indicates the first bar of the performance
endbar : (int) indicates the last bar of the performance
offset : (float) measured latency between audio and score
pitch_json_file : (string) json file with the pitch contour
score_file : (string) music score xml file
voice : (string) voice part as written in the score
output_filename : (string) output filename to use for the assessment results file
dev_thresh : (float) maximum allowed deviation in cents. Defaults to 100 cents
Returns
-------
assessment : (dictionary) the field 'pitchAssessment' contains a list of arrays with the results for each note in
in the form [note_start_time, intonation_rating]. If the process fails, the list will be empty. The field 'error'
will contain a string with an error message if the process fails, and will be None if it's successful.
overall_score : (float) overall intonation score computed as the weighted sum of note intonation scores. Can be
ignored because it's not used by the CSP.
This function stores a json file with the assessment dictionary in the file indicated by the `output_filename`
parameter.
'''
assessment = {}
assessment['pitchAssessment'] = []
assessment['error'] = None
try:
'''STEP 1: parse xml score, convert to MIDI and save
'''
# quick hack to deal with accents in the voice parts, needs to be updated
change_flag = 0
xml_data = m21.converter.parse(score_file)
#import pdb; pdb.set_trace()
for i in range(len(xml_data.parts)):
name = xml_data.parts[i].getInstrument().partName
if name != unidecode.unidecode(name):
change_flag = 1
xml_data.parts[i].getInstrument().partName = unidecode.unidecode(name)
if change_flag != 0:
xml_data.write('midi', score_file.replace('xml', 'mid'))
else:
xml2midi(score_file)
#
# if voice == 'Baríton':
# xml_data = m21.converter.parse(score_file)
# xml_data.parts[2].getInstrument().partName = 'Bariton'
# xml_data.write('midi', score_file.replace('xml', 'mid'))
#
# else:
# xml2midi(score_file)
'''STEP 2: parse MIDI file and arrange info
'''
onsets, offsets, pitches, midi_data = parse_midi(score_file, unidecode.unidecode(voice))
'''STEP 3: parse the F0 contour and adjust according to latency
'''
# if latency is larger than 1 second it's likely and error, we set it to 0.3 by default
if offset >= 1:
offset = 0.3
times, freqs = load_f0_contour(pitch_json_file, starttime=offset)
'''STEP 4: Delimiting the performance in the score and the F0 curve
'''
starting = midi_data['downbeats'][int(startbar) - 1] # bars start at 1, indices at 0
# Account for the case of last bar being the last of the piece and size mismatch
if int(endbar) >= len(midi_data['downbeats']):
ending = offsets[-1]
else:
ending = midi_data['downbeats'][int(endbar)] - 0.005
st_idx = np.where(onsets >= starting)[0][0]
end_idx = np.where(offsets >= ending)[0][0]
# getting info from notes according to the sung audio excerpt
onsets, offsets, pitches = onsets[st_idx:end_idx + 1], offsets[st_idx:end_idx + 1], pitches[st_idx:end_idx + 1]
# If all freqs are 0, there's no singing in the performance, we return 0
if sum(freqs) == 0:
assessment['pitchAssessment'] = [np.array([onset, 0]) for onset in onsets]
overall_score = 0
return assessment, overall_score
try:
st_idx = np.where(times + starting >= starting)[0][0]
except:
raise ValueError("Recording not valid, does not contain the performance.")
try:
end_idx = np.where(times + starting >= ending)[0][0]
except:
end_idx = -1
'''STEP 5: Converting the MIDI info to a F0 trajectory for easier comparison. Resampling to a common
time base.
'''
ref_times, ref_freqs = midi_to_trajectory(times[st_idx:end_idx] + starting, onsets, offsets, pitches)
times += ref_times[0]
# Resample to the same timebase. We use the reference timebase
freqs, voicing = mir_eval.melody.freq_to_voicing(freqs)
est_freqs, _ = mir_eval.melody.resample_melody_series(times, freqs, voicing, ref_times, kind='nearest')
'''STEP 6: Compute intonation score as the average (median) deviations for each note in the excerpt.
'''
note_deviations = []
ratings = []
for i in range(len(onsets)):
# indices of the note region
region_idxs = np.where((ref_times >= onsets[i]) & (ref_times < offsets[i]))[0]
note_start, note_end = region_idxs[0], region_idxs[-1]
# compute deviation frame-wise
if pitches[i] < eps: pitches[i] = eps
devs = 1200.0 * np.log2(est_freqs[note_start:note_end] / pitches[i])
note_median_dev = np.median(devs)
note_deviations.append(note_median_dev)
# map deviation to range [0, 1]
intonation_score = map_deviation_range(note_median_dev, max_deviation=dev_thresh)
ratings.append(intonation_score)
# store intonation score in the output dictionary
# assessment['pitchAssessment'].append(
# np.array(
# [onsets[i], intonation_score]
# )
# )
assessment['pitchAssessment'].append(
[onsets[i], intonation_score]
)
# Idea for a weighted overall score
durations = offsets - onsets
durations /= offsets[-1]
overall_score = np.dot(ratings, durations)
'''Store the ratings in a json file
'''
if output_filename.endswith('json'):
save_json_data(assessment, output_filename)
else:
save_json_data(assessment, output_filename + '.json')
return assessment, overall_score
except:
assessment['error'] = 'Something went wrong during the assessment process.'
overall_score = 0
if output_filename.endswith('json'):
save_json_data(assessment, output_filename)
else:
save_json_data(assessment, output_filename + '.json')
return assessment, overall_score