Skip to content

Commit 72906dc

Browse files
authored
Update README.md
1 parent d55bf23 commit 72906dc

File tree

1 file changed

+3
-3
lines changed

1 file changed

+3
-3
lines changed

README.md

+3-3
Original file line numberDiff line numberDiff line change
@@ -30,12 +30,12 @@
3030
```
3131
df_user_register.sample(10)
3232
```
33-
![image](https://github.com/hellobilllee/ActiveUserPrediction/tree/master/photos/sample.JPG)
33+
![ScreenShot](photos/sample.JPG)
3434
使用pandas 的describe()函数了解数据基本统计信息了。如:
3535
```python
3636
>des_user_register= df_user_register.describe(include="all")
3737
```
38-
![image](https://github.com/hellobilllee/ActiveUserPrediction/tree/master/photos/describe.JPG)
38+
![ScreenShot](photos/describe.JPG)
3939

4040
可以看出注册时间为30天,即一个月数据,注册类型有12种,设备类型有一千多种。注意对于类别性特征,读取数据时需要将该特征的dtype显示设置为str,然后describe()中参数include设置为all,就可以分别得到类别型和数值型特征的统计信息了。以下为读取注册日志代码:
4141
```python
@@ -56,7 +56,7 @@ df_user_register.sample(10)
5656
```
5757
df_user_register['register_day'].value_counts()
5858
```
59-
![image](https://github.com/hellobilllee/ActiveUserPrediction/tree/master/photos/value_count.JPG)
59+
![ScreenShot](photos/value_count.JPG)
6060

6161
推荐使用seaborn进行更加可视化分析:
6262

0 commit comments

Comments
 (0)