forked from xebd/accel-ppp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrfc3580.txt
1683 lines (1137 loc) · 64.6 KB
/
rfc3580.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
Network Working Group P. Congdon
Request for Comments: 3580 Hewlett Packard Company
Category: Informational B. Aboba
Microsoft
A. Smith
Trapeze Networks
G. Zorn
Cisco Systems
J. Roese
Enterasys
September 2003
IEEE 802.1X Remote Authentication Dial In User Service (RADIUS)
Usage Guidelines
Status of this Memo
This memo provides information for the Internet community. It does
not specify an Internet standard of any kind. Distribution of this
memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (2003). All Rights Reserved.
Abstract
This document provides suggestions on Remote Authentication Dial In
User Service (RADIUS) usage by IEEE 802.1X Authenticators. The
material in this document is also included within a non-normative
Appendix within the IEEE 802.1X specification, and is being presented
as an IETF RFC for informational purposes.
Congdon, et al. Informational [Page 1]
RFC 3580 IEEE 802.1X RADIUS September 2003
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1. Terminology. . . . . . . . . . . . . . . . . . . . . . . 3
1.2. Requirements Language. . . . . . . . . . . . . . . . . . 4
2. RADIUS Accounting Attributes . . . . . . . . . . . . . . . . . 5
2.1. Acct-Terminate-Cause . . . . . . . . . . . . . . . . . . 5
2.2. Acct-Multi-Session-Id. . . . . . . . . . . . . . . . . . 6
2.3. Acct-Link-Count. . . . . . . . . . . . . . . . . . . . . 7
3. RADIUS Authentication. . . . . . . . . . . . . . . . . . . . . 7
3.1. User-Name. . . . . . . . . . . . . . . . . . . . . . . . 8
3.2. User-Password, CHAP-Password, CHAP-Challenge . . . . . . 8
3.3. NAS-IP-Address, NAS-IPv6-Address . . . . . . . . . . . . 8
3.4. NAS-Port . . . . . . . . . . . . . . . . . . . . . . . . 8
3.5. Service-Type . . . . . . . . . . . . . . . . . . . . . . 8
3.6. Framed-Protocol. . . . . . . . . . . . . . . . . . . . . 9
3.7. Framed-IP-Address, Framed-IP-Netmask . . . . . . . . . . 9
3.8. Framed-Routing . . . . . . . . . . . . . . . . . . . . . 9
3.9. Filter-ID. . . . . . . . . . . . . . . . . . . . . . . . 9
3.10. Framed-MTU . . . . . . . . . . . . . . . . . . . . . . . 9
3.11. Framed-Compression . . . . . . . . . . . . . . . . . . . 10
3.12. Displayable Messages . . . . . . . . . . . . . . . . . . 10
3.13. Callback-Number, Callback-ID . . . . . . . . . . . . . . 10
3.14. Framed-Route, Framed-IPv6-Route. . . . . . . . . . . . . 11
3.15. State, Class, Proxy-State. . . . . . . . . . . . . . . . 11
3.16. Vendor-Specific. . . . . . . . . . . . . . . . . . . . . 11
3.17. Session-Timeout. . . . . . . . . . . . . . . . . . . . . 11
3.18. Idle-Timeout . . . . . . . . . . . . . . . . . . . . . . 12
3.19. Termination-Action . . . . . . . . . . . . . . . . . . . 12
3.20. Called-Station-Id. . . . . . . . . . . . . . . . . . . . 12
3.21. Calling-Station-Id . . . . . . . . . . . . . . . . . . . 12
3.22. NAS-Identifier . . . . . . . . . . . . . . . . . . . . . 12
3.23. NAS-Port-Type. . . . . . . . . . . . . . . . . . . . . . 12
3.24. Port-Limit . . . . . . . . . . . . . . . . . . . . . . . 13
3.25. Password-Retry . . . . . . . . . . . . . . . . . . . . . 13
3.26. Connect-Info . . . . . . . . . . . . . . . . . . . . . . 13
3.27. EAP-Message. . . . . . . . . . . . . . . . . . . . . . . 13
3.28. Message-Authenticator. . . . . . . . . . . . . . . . . . 13
3.29. NAS-Port-Id. . . . . . . . . . . . . . . . . . . . . . . 13
3.30. Framed-Pool, Framed-IPv6-Pool. . . . . . . . . . . . . . 14
3.31. Tunnel Attributes. . . . . . . . . . . . . . . . . . . . 14
4. RC4 EAPOL-Key Descriptor . . . . . . . . . . . . . . . . . . . 15
5. Security Considerations. . . . . . . . . . . . . . . . . . . . 18
5.1. Packet Modification or Forgery . . . . . . . . . . . . . 18
5.2. Dictionary Attacks . . . . . . . . . . . . . . . . . . . 19
5.3. Known Plaintext Attacks. . . . . . . . . . . . . . . . . 19
5.4. Replay . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.5. Outcome Mismatches . . . . . . . . . . . . . . . . . . . 20
Congdon, et al. Informational [Page 2]
RFC 3580 IEEE 802.1X RADIUS September 2003
5.6. 802.11 Integration . . . . . . . . . . . . . . . . . . . 20
5.7. Key Management Issues. . . . . . . . . . . . . . . . . . 21
6. IANA Considerations. . . . . . . . . . . . . . . . . . . . . . 22
7. References . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.1. Normative References . . . . . . . . . . . . . . . . . . 22
7.2. Informative References . . . . . . . . . . . . . . . . . 23
8. Table of Attributes. . . . . . . . . . . . . . . . . . . . . . 25
9. Intellectual Property Statement . . . . . . . . . . . . . . . 28
10. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 28
11. Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . 29
12. Full Copyright Statement . . . . . . . . . . . . . . . . . . . 30
1. Introduction
IEEE 802.1X enables authenticated access to IEEE 802 media, including
Ethernet, Token Ring, and 802.11 wireless LANs. Although Remote
Authentication Dial In User Service (RADIUS) support is optional
within IEEE 802.1X, it is expected that many IEEE 802.1X
Authenticators will function as RADIUS clients.
IEEE 802.1X [IEEE8021X] provides "network port authentication" for
IEEE 802 [IEEE802] media, including Ethernet [IEEE8023], Token Ring
and 802.11 [IEEE80211] wireless LANS.
IEEE 802.1X does not require use of a backend Authentication Server,
and thus can be deployed with stand-alone bridges or Access Points,
as well as in centrally managed scenarios.
In situations where it is desirable to centrally manage
authentication, authorization and accounting (AAA) for IEEE 802
networks, deployment of a backend authentication and accounting
server is desirable. In such situations, it is expected that IEEE
802.1X Authenticators will function as AAA clients.
This document provides suggestions on RADIUS usage by IEEE 802.1X
Authenticators. Support for any AAA protocol is optional for IEEE
802.1X Authenticators, and therefore this specification has been
incorporated into a non-normative Appendix within the IEEE 802.1X
specification.
1.1. Terminology
This document uses the following terms:
Access Point (AP)
A Station that provides access to the distribution services via
the wireless medium for associated Stations.
Congdon, et al. Informational [Page 3]
RFC 3580 IEEE 802.1X RADIUS September 2003
Association
The service used to establish Access Point/Station mapping and
enable Station invocation of the distribution system services.
Authenticator
An Authenticator is an entity that requires authentication from
the Supplicant. The Authenticator may be connected to the
Supplicant at the other end of a point-to-point LAN segment or
802.11 wireless link.
Authentication Server
An Authentication Server is an entity that provides an
Authentication Service to an Authenticator. This service
verifies, from the credentials provided by the Supplicant, the
claim of identity made by the Supplicant.
Port Access Entity (PAE)
The protocol entity associated with a physical or virtual
(802.11) Port. A given PAE may support the protocol
functionality associated with the Authenticator, Supplicant or
both.
Station (STA)
Any device that contains an IEEE 802.11 conformant medium
access control (MAC) and physical layer (PHY) interface to the
wireless medium (WM).
Supplicant
A Supplicant is an entity that is being authenticated by an
Authenticator. The Supplicant may be connected to the
Authenticator at one end of a point-to-point LAN segment or
802.11 wireless link.
1.2. Requirements Language
In this document, several words are used to signify the requirements
of the specification. These words are often capitalized. The key
words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document
are to be interpreted as described in [RFC2119].
Congdon, et al. Informational [Page 4]
RFC 3580 IEEE 802.1X RADIUS September 2003
2. RADIUS Accounting Attributes
With a few exceptions, the RADIUS accounting attributes defined in
[RFC2866], [RFC2867], and [RFC2869] have the same meaning within IEEE
802.1X sessions as they do in dialup sessions and therefore no
additional commentary is needed.
Attributes requiring more discussion include:
Acct-Terminate-Cause
Acct-Multi-Session-Id
Acct-Link-Count
2.1. Acct-Terminate-Cause
This attribute indicates how the session was terminated, as described
in [RFC2866]. [IEEE8021X] defines the following termination cause
values, which are shown with their RADIUS equivalents in the table on
the next page.
IEEE 802.1X RADIUS
dot1xAuthSessionTerminateCause Acct-Terminate-Cause
Value Value
------------- --------------------
SupplicantLogoff(1) User Request (1)
portFailure(2) Lost Carrier (2)
SupplicantRestart(3) Supplicant Restart (19)
reauthFailed(4) Reauthentication Failure (20)
authControlForceUnauth(5) Admin Reset (6)
portReInit(6) Port Reinitialized (21)
portAdminDisabled(7) Port Administratively Disabled (22)
notTerminatedYet(999) N/A
When using this attribute, the User Request (1) termination cause
corresponds to the situation in which the session terminated due to
an EAPOL-Logoff received from the Supplicant. When a session is
moved due to roaming, the EAPOL state machines will treat this as a
Supplicant Logoff.
A Lost Carrier (2) termination cause indicates session termination
due to loss of physical connectivity for reasons other than roaming
between Access Points. For example, if the Supplicant disconnects a
point-to-point LAN connection, or moves out of range of an Access
Point, this termination cause is used. Lost Carrier (2) therefore
equates to a Port Disabled condition in the EAPOL state machines.
A Supplicant Restart (19) termination cause indicates
re-initialization of the Supplicant state machines.
Congdon, et al. Informational [Page 5]
RFC 3580 IEEE 802.1X RADIUS September 2003
A Reauthentication Failure (20) termination cause indicates that a
previously authenticated Supplicant has failed to re-authenticate
successfully following expiry of the re-authentication timer or
explicit re-authentication request by management action.
Within [IEEE80211], periodic re-authentication may be useful in
preventing reuse of an initialization vector with a given key. Since
successful re-authentication does not result in termination of the
session, accounting packets are not sent as a result of
re-authentication unless the status of the session changes. For
example:
a. The session is terminated due to re-authentication failure. In
this case the Reauthentication Failure (20) termination cause is
used.
b. The authorizations are changed as a result of a successful
re-authentication. In this case, the Service Unavailable (15)
termination cause is used. For accounting purposes, the portion
of the session after the authorization change is treated as a
separate session.
Where IEEE 802.1X authentication occurs prior to association,
accounting packets are not sent until an association occurs.
An Admin Reset (6) termination cause indicates that the Port has been
administratively forced into the unauthorized state.
A Port Reinitialized (21) termination cause indicates that the Port's
MAC has been reinitialized.
A Port Administratively Disabled (22) termination cause indicates
that the Port has been administratively disabled.
2.2. Acct-Multi-Session-Id
The purpose of this attribute is to make it possible to link together
multiple related sessions. While [IEEE8021X] does not act on
aggregated ports, it is possible for a Supplicant roaming between
Access Points to cause multiple RADIUS accounting packets to be sent
by different Access Points.
Where supported by the Access Points, the Acct-Multi-Session-Id
attribute can be used to link together the multiple related sessions
of a roaming Supplicant. In such a situation, if the session context
is transferred between Access Points, accounting packets MAY be sent
without a corresponding authentication and authorization exchange,
Congdon, et al. Informational [Page 6]
RFC 3580 IEEE 802.1X RADIUS September 2003
provided that Association has occurred. However, in such a situation
it is assumed that the Acct-Multi-Session-Id is transferred between
the Access Points as part of the Inter-Access Point Protocol (IAPP).
If the Acct-Multi-Session-Id were not unique between Access Points,
then it is possible that the chosen Acct-Multi-Session-Id will
overlap with an existing value allocated on that Access Point, and
the Accounting Server would therefore be unable to distinguish a
roaming session from a multi-link session.
As a result, the Acct-Multi-Session-Id attribute is unique among all
the bridges or Access Points, Supplicants and sessions. In order to
provide this uniqueness, it is suggested that the Acct-Multi-
Session-Id be of the form:
Original AP MAC Address | Supplicant MAC Address | NTP Timestamp
Here "|" represents concatenation, the original AP MAC Address is the
MAC address of the bridge or Access Point at which the session
started, and the 64-bit NTP timestamp indicates the beginning of the
original session. In order to provide for consistency of the Acct-
Multi-Session-Id between roaming sessions, the Acct-Multi-Session-Id
may be moved between Access Points as part of IAPP or another handoff
scheme.
The use of an Acct-Multi-Session-Id of this form guarantees
uniqueness among all Access Points, Supplicants and sessions. Since
the NTP timestamp does not wrap on reboot, there is no possibility
that a rebooted Access Point could choose an Acct-Multi-Session-Id
that could be confused with that of a previous session.
Since the Acct-Multi-Session-Id is of type String as defined in
[RFC2866], for use with IEEE 802.1X, it is encoded as an ASCII string
of Hex digits. Example: "00-10-A4-23-19-C0-00-12-B2-
14-23-DE-AF-23-83-C0-76-B8-44-E8"
2.3. Acct-Link-Count
The Acct-Link-Count attribute may be used to account for the number
of ports that have been aggregated.
3. RADIUS Authentication
This section describes how attributes defined in [RFC2865],
[RFC2867], [RFC2868], [RFC2869], [RFC3162] and [RFC3579] are used in
IEEE 802.1X authentication.
Congdon, et al. Informational [Page 7]
RFC 3580 IEEE 802.1X RADIUS September 2003
3.1. User-Name
In IEEE 802.1X, the Supplicant typically provides its identity via an
EAP-Response/Identity message. Where available, the Supplicant
identity is included in the User-Name attribute, and included in the
RADIUS Access-Request and Access-Reply messages as specified in
[RFC2865] and [RFC3579].
Alternatively, as discussed in [RFC3579] Section 2.1., the User-Name
attribute may contain the Calling-Station-ID value, which is set to
the Supplicant MAC address.
3.2. User-Password, CHAP-Password, CHAP-Challenge
Since IEEE 802.1X does not support PAP or CHAP authentication, the
User-Password, CHAP-Password or CHAP-Challenge attributes are not
used by IEEE 802.1X Authenticators acting as RADIUS clients.
3.3. NAS-IP-Address, NAS-IPv6-Address
For use with IEEE 802.1X, the NAS-IP-Address contains the IPv4
address of the bridge or Access Point acting as an Authenticator, and
the NAS-IPv6-Address contains the IPv6 address. If the IEEE 802.1X
Authenticator has more than one interface, it may be desirable to use
a loopback address for this purpose so that the Authenticator will
still be reachable even if one of the interfaces were to fail.
3.4. NAS-Port
For use with IEEE 802.1X the NAS-Port will contain the port number of
the bridge, if this is available. While an Access Point does not
have physical ports, a unique "association ID" is assigned to every
mobile Station upon a successful association exchange. As a result,
for an Access Point, if the association exchange has been completed
prior to authentication, the NAS-Port attribute will contain the
association ID, which is a 16-bit unsigned integer. Where IEEE
802.1X authentication occurs prior to association, a unique NAS-Port
value may not be available.
3.5. Service-Type
For use with IEEE 802.1X, the Framed (2), Authenticate Only (8), and
Call Check (10) values are most commonly used.
A Service-Type of Framed indicates that appropriate 802 framing
should be used for the connection. A Service-Type of Authenticate
Only (8) indicates that no authorization information needs to be
returned in the Access-Accept. As described in [RFC2865], a
Congdon, et al. Informational [Page 8]
RFC 3580 IEEE 802.1X RADIUS September 2003
Service-Type of Call Check is included in an Access-Request packet to
request that the RADIUS server accept or reject the connection
attempt, typically based on the Called-Station-ID (set to the bridge
or Access Point MAC address) or Calling-Station-ID attributes (set to
the Supplicant MAC address). As noted in [RFC2865], it is
recommended that in this case, the User-Name attribute be given the
value of Calling-Station-Id.
3.6. Framed-Protocol
Since there is no value for IEEE 802 media, the Framed-Protocol
attribute is not used by IEEE 802.1X Authenticators.
3.7. Framed-IP-Address, Framed-IP-Netmask
IEEE 802.1X does not provide a mechanism for IP address assignment.
Therefore the Framed-IP-Address and Framed-IP-Netmask attributes can
only be used by IEEE 802.1X Authenticators that support IP address
assignment mechanisms. Typically this capability is supported by
layer 3 devices.
3.8. Framed-Routing
The Framed-Routing attribute indicates the routing method for the
Supplicant. It is therefore only relevant for IEEE 802.1X
Authenticators that act as layer 3 devices, and cannot be used by a
bridge or Access Point.
3.9. Filter-ID
This attribute indicates the name of the filter list to be applied to
the Supplicant's session. For use with an IEEE 802.1X Authenticator,
it may be used to indicate either layer 2 or layer 3 filters. Layer
3 filters are typically only supported on IEEE 802.1X Authenticators
that act as layer 3 devices.
3.10. Framed-MTU
This attribute indicates the maximum size of an IP packet that may be
transmitted over the wire between the Supplicant and the
Authenticator. IEEE 802.1X Authenticators set this to the value
corresponding to the relevant 802 medium, and include it in the
RADIUS Access-Request. The RADIUS server may send an EAP packet as
large as Framed-MTU minus four (4) octets, taking into account the
additional overhead for the IEEE 802.1X Version (1), Type (1) and
Body Length (2) fields. For EAP over IEEE 802 media, the Framed-MTU
values (which do not include LLC/SNAP overhead) and maximum frame
length values (not including the preamble) are as follows:
Congdon, et al. Informational [Page 9]
RFC 3580 IEEE 802.1X RADIUS September 2003
Maximum Frame
Media Framed-MTU Length
========= =============== ==============
Ethernet 1500 1522
802.3 1500 1522
802.4 8174 8193
802.5 (4 Mbps) 4528 4550
802.5 (16 Mbps) 18173 18200
802.5 (100 Mb/s) 18173 18200
802.6 9191 9240
802.9a 1500 1518
802.11 2304 2346
802.12 (Ethernet) 1500 1518
802.12 (Token Ring) 4502 4528
FDDI 4479 4500
NOTE - the Framed-MTU size for IEEE 802.11 media may change as a
result of ongoing work being undertaken in the IEEE 802.11 Working
Group. Since some 802.11 stations cannot handle an MTU larger than
1500 octets, it is recommended that RADIUS servers encountering a
NAS-Port-Type value of 802.11 send EAP packets no larger than 1496
octets.
3.11. Framed-Compression
[IEEE8021X] does not include compression support. Therefore this
attribute is not understood by [IEEE8021X] Authenticators.
3.12. Displayable Messages
The Reply-Message attribute, defined in section 5.18 of [RFC2865],
indicates text which may be displayed to the user. This is similar
in concept to the EAP Notification Type, defined in [RFC2284]. As
noted in [RFC3579], Section 2.6.5, when sending a displayable message
to an [IEEE8021X] Authenticator, displayable messages are best sent
within EAP-Message/EAP-Request/Notification attribute(s), and not
within Reply-Message attribute(s).
3.13. Callback-Number, Callback-ID
These attributes are not understood by IEEE 802.1X Authenticators.
Congdon, et al. Informational [Page 10]
RFC 3580 IEEE 802.1X RADIUS September 2003
3.14. Framed-Route, Framed-IPv6-Route
The Framed-Route and Framed-IPv6-Route attributes provide routes that
are to be configured for the Supplicant. These attributes are
therefore only relevant for IEEE 802.1X Authenticators that act as
layer 3 devices, and cannot be understood by a bridge or Access
Point.
3.15. State, Class, Proxy-State
These attributes are used for the same purposes as described in
[RFC2865].
3.16. Vendor-Specific
Vendor-specific attributes are used for the same purposes as
described in [RFC2865]. The MS-MPPE-Send-Key and MS-MPPE-Recv-Key
attributes, described in section 2.4 of [RFC2548], MAY be used to
encrypt and authenticate the RC4 EAPOL-Key descriptor [IEEE8021X,
Section 7.6]. Examples of the derivation of the MS-MPPE-Send-Key and
MS-MPPE-Recv-Key attributes from the master key negotiated by an EAP
method are given in [RFC2716]. Details of the EAPOL-Key descriptor
are provided in Section 4.
3.17. Session-Timeout
When sent along in an Access-Accept without a Termination-Action
attribute or with a Termination-Action attribute set to Default, the
Session-Timeout attribute specifies the maximum number of seconds of
service provided prior to session termination.
When sent in an Access-Accept along with a Termination-Action value
of RADIUS-Request, the Session-Timeout attribute specifies the
maximum number of seconds of service provided prior to re-
authentication. In this case, the Session-Timeout attribute is used
to load the reAuthPeriod constant within the Reauthentication Timer
state machine of 802.1X. When sent with a Termination-Action value
of RADIUS-Request, a Session-Timeout value of zero indicates the
desire to perform another authentication (possibly of a different
type) immediately after the first authentication has successfully
completed.
When sent in an Access-Challenge, this attribute represents the
maximum number of seconds that an IEEE 802.1X Authenticator should
wait for an EAP-Response before retransmitting. In this case, the
Session-Timeout attribute is used to load the suppTimeout constant
within the backend state machine of IEEE 802.1X.
Congdon, et al. Informational [Page 11]
RFC 3580 IEEE 802.1X RADIUS September 2003
3.18. Idle-Timeout
The Idle-Timeout attribute is described in [RFC2865]. For IEEE 802
media other than 802.11 the media are always on. As a result the
Idle-Timeout attribute is typically only used with wireless media
such as IEEE 802.11. It is possible for a wireless device to wander
out of range of all Access Points. In this case, the Idle-Timeout
attribute indicates the maximum time that a wireless device may
remain idle.
3.19. Termination-Action
This attribute indicates what action should be taken when the service
is completed. The value RADIUS-Request (1) indicates that re-
authentication should occur on expiration of the Session-Time. The
value Default (0) indicates that the session should terminate.
3.20. Called-Station-Id
For IEEE 802.1X Authenticators, this attribute is used to store the
bridge or Access Point MAC address in ASCII format (upper case only),
with octet values separated by a "-". Example: "00-10-A4-23-19-C0".
In IEEE 802.11, where the SSID is known, it SHOULD be appended to the
Access Point MAC address, separated from the MAC address with a ":".
Example "00-10-A4-23-19-C0:AP1".
3.21. Calling-Station-Id
For IEEE 802.1X Authenticators, this attribute is used to store the
Supplicant MAC address in ASCII format (upper case only), with octet
values separated by a "-". Example: "00-10-A4-23-19-C0".
3.22. NAS-Identifier
This attribute contains a string identifying the IEEE 802.1X
Authenticator originating the Access-Request.
3.23. NAS-Port-Type
For use with IEEE 802.1X, NAS-Port-Type values of Ethernet (15)
Wireless - IEEE 802.11 (19), Token Ring (20) and FDDI (21) may be
used.
Congdon, et al. Informational [Page 12]
RFC 3580 IEEE 802.1X RADIUS September 2003
3.24. Port-Limit
This attribute has no meaning when sent to an [IEEE8021X]
Authenticator.
3.25. Password-Retry
In IEEE 802.1X, the Authenticator always transitions to the HELD
state after an authentication failure. Thus this attribute does not
make sense for IEEE 802.1X.
3.26. Connect-Info
This attribute is sent by a bridge or Access Point to indicate the
nature of the Supplicant's connection. When sent in the Access-
Request it is recommended that this attribute contain information on
the speed of the Supplicant's connection. For 802.11, the following
format is recommended: "CONNECT 11Mbps 802.11b". If sent in the
Accounting STOP, this attribute may be used to summarize statistics
relating to session quality. For example, in IEEE 802.11, the
Connect-Info attribute may contain information on the number of link
layer retransmissions. The exact format of this attribute is
implementation specific.
3.27. EAP-Message
Since IEEE 802.1X provides for encapsulation of EAP as described in
[RFC2284] and [IEEE8021X], the EAP-Message attribute defined in
[RFC3579] is used to encapsulate EAP packets for transmission from
the IEEE 802.1X Authenticator to the Authentication Server. [RFC3579]
Section 2.2. describes how the Authentication Server handles invalid
EAP packets passed to it by the Authenticator.
3.28. Message-Authenticator
As noted in [RFC3579] Section 3.1., the Message-Authenticator
attribute MUST be used to protect packets within a RADIUS/EAP
conversation.
3.29. NAS-Port-Id
This attribute is used to identify the IEEE 802.1X Authenticator port
which authenticates the Supplicant. The NAS-Port-Id differs from the
NAS-Port in that it is a string of variable length whereas the NAS-
Port is a 4 octet value.
Congdon, et al. Informational [Page 13]
RFC 3580 IEEE 802.1X RADIUS September 2003
3.30. Framed-Pool, Framed-IPv6-Pool
IEEE 802.1X does not provide a mechanism for IP address assignment.
Therefore the Framed-Pool and Framed-IPv6-Pool attributes can only be
used by IEEE 802.1X Authenticators that support IP address assignment
mechanisms. Typically this capability is supported by layer 3
devices.
3.31. Tunnel Attributes
Reference [RFC2868] defines RADIUS tunnel attributes used for
authentication and authorization, and [RFC2867] defines tunnel
attributes used for accounting. Where the IEEE 802.1X Authenticator
supports tunneling, a compulsory tunnel may be set up for the
Supplicant as a result of the authentication.
In particular, it may be desirable to allow a port to be placed into
a particular Virtual LAN (VLAN), defined in [IEEE8021Q], based on the
result of the authentication. This can be used, for example, to
allow a wireless host to remain on the same VLAN as it moves within a
campus network.
The RADIUS server typically indicates the desired VLAN by including
tunnel attributes within the Access-Accept. However, the IEEE 802.1X
Authenticator may also provide a hint as to the VLAN to be assigned
to the Supplicant by including Tunnel attributes within the Access-
Request.
For use in VLAN assignment, the following tunnel attributes are used:
Tunnel-Type=VLAN (13)
Tunnel-Medium-Type=802
Tunnel-Private-Group-ID=VLANID
Note that the VLANID is 12-bits, taking a value between 1 and 4094,
inclusive. Since the Tunnel-Private-Group-ID is of type String as
defined in [RFC2868], for use with IEEE 802.1X, the VLANID integer
value is encoded as a string.
When Tunnel attributes are sent, it is necessary to fill in the Tag
field. As noted in [RFC2868], section 3.1:
The Tag field is one octet in length and is intended to provide a
means of grouping attributes in the same packet which refer to the
same tunnel. Valid values for this field are 0x01 through 0x1F,
inclusive. If the Tag field is unused, it MUST be zero (0x00).
Congdon, et al. Informational [Page 14]
RFC 3580 IEEE 802.1X RADIUS September 2003
For use with Tunnel-Client-Endpoint, Tunnel-Server-Endpoint, Tunnel-
Private-Group-ID, Tunnel-Assignment-ID, Tunnel-Client-Auth-ID or
Tunnel-Server-Auth-ID attributes (but not Tunnel-Type, Tunnel-
Medium-Type, Tunnel-Password, or Tunnel-Preference), a tag field of
greater than 0x1F is interpreted as the first octet of the following
field.
Unless alternative tunnel types are provided, (e.g. for IEEE 802.1X
Authenticators that may support tunneling but not VLANs), it is only
necessary for tunnel attributes to specify a single tunnel. As a
result, where it is only desired to specify the VLANID, the tag field
SHOULD be set to zero (0x00) in all tunnel attributes. Where
alternative tunnel types are to be provided, tag values between 0x01
and 0x1F SHOULD be chosen.
4. RC4 EAPOL-Key Frame
The RC4 EAPOL-Key frame is created and transmitted by the
Authenticator in order to provide media specific key information.
For example, within 802.11 the RC4 EAPOL-Key frame can be used to
distribute multicast/broadcast ("default") keys, or unicast ("key
mapping") keys. The "default" key is the same for all Stations
within a broadcast domain.
The RC4 EAPOL-Key frame is not acknowledged and therefore the
Authenticator does not know whether the Supplicant has received it.
If it is lost, then the Supplicant and Authenticator will not have
the same keying material, and communication will fail. If this
occurs, the problem is typically addressed by re-running the
authentication.
The RC4 EAPOL-Key frame is sent from the Authenticator to the
Supplicant in order to provision the "default" key, and subsequently
in order to refresh the "default" key. It may also be used to
refresh the key-mapping key. Rekey is typically only required with
weak ciphersuites such as WEP, defined in [IEEE80211].
Where keys are required, an EAP method that derives keys is typically
selected. Therefore the initial "key mapping" keys can be derived
from EAP keying material, without requiring the Authenticator to send
an RC4 EAPOL-Key frame to the Supplicant. An example of how EAP
keying material can be derived and used is presented in [RFC2716].
Congdon, et al. Informational [Page 15]
RFC 3580 IEEE 802.1X RADIUS September 2003
While the RC4 EAPOL-Key frame is defined in [IEEE8021X], a more
complete description is provided on the next page.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Version | Packet Type | Packet Body Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Key Length |Replay Counter...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Replay Counter...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Replay Counter | Key IV...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Key IV...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Key IV...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Key IV...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Key IV... |F| Key Index |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Key Signature...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Key Signature...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Key Signature...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Key Signature...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Key...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Version
The Version field is one octet. For IEEE 802.1X, it contains the
value 0x01.
Packet Type
The Packet Type field is one octet, and determines the type of
packet being transmitted. For an EAPOL-Key Descriptor, the Packet
Type field contains 0x03.
Packet Body Length
The Packet Body Length is two octets, and contains the length of
the EAPOL-Key descriptor in octets, not including the Version,
Packet Type and Packet Body Length fields.
Congdon, et al. Informational [Page 16]
RFC 3580 IEEE 802.1X RADIUS September 2003
Type
The Type field is a single octet. The Key descriptor is defined
differently for each Type; this specification documents only the
RC4 Key Descriptor (Type = 0x01).
Key Length
The Key Length field is two octets. If Packet Body Length = 44 +
Key Length, then the Key Field contains the key in encrypted form,
of length Key Length. This is 5 octets (40 bits) for WEP, and 13
octets (104 bits) for WEP-128. If Packet Body Length = 44, then
the Key field is absent, and Key Length represents the number of
least significant octets from the MS-MPPE-Send-Key attribute
[RFC2548] to be used as the keying material. Note that the MS-
MPPE-Send-Key and MS-MPPE-Recv-Key attributes are defined from the
point of view of the Authenticator. From the Supplicant point of
reference, the terms are reversed. Thus the MS-MPPE-Recv-Key on
the Supplicant corresponds to the MS-MPPE-Send-Key on the
Authenticator, and the MS-MPPE-Send-Key on the Supplicant
corresponds to the MS-MPPE-Recv-Key on the Authenticator.
Replay Counter
The Replay Counter field is 8 octets. It does not repeat within
the life of the keying material used to encrypt the Key field and
compute the Key Signature field. A 64-bit NTP timestamp MAY be
used as the Replay Counter.
Key IV
The Key IV field is 16 octets and includes a 128-bit
cryptographically random number.
F
The Key flag (F) is a single bit, describing the type of key that
is included in the Key field. Values are:
0 = for broadcast (default key)
1 = for unicast (key mapping key)
Key Index
The Key Index is 7 bits.
Key Signature
The Key Signature field is 16 octets. It contains an HMAC-MD5
message integrity check computed over the EAPOL-Key descriptor,
starting from the Version field, with the Key field filled in if
present, but with the Key Signature field set to zero. For the
computation, the 32 octet (256 bit) MS-MPPE-Send-Key [RFC2548] is
used as the HMAC-MD5 key.
Congdon, et al. Informational [Page 17]
RFC 3580 IEEE 802.1X RADIUS September 2003
Key
If Packet Body Length = 44 + Key Length, then the Key Field
contains the key in encrypted form, of length Key Length. If
Packet Body Length = 44, then the Key field is absent, and the
least significant Key Length octets from the MS-MPPE-Send-Key
attribute is used as the keying material. Where the Key field is
encrypted using RC4, the RC4 encryption key used to encrypt this
field is formed by concatenating the 16 octet (128 bit) Key-IV
field with the 32 octet MS-MPPE-Recv-Key attribute. This yields a
48 octet RC4 key (384 bits).
5. Security Considerations
Since this document describes the use of RADIUS for purposes of
authentication, authorization, and accounting in IEEE 802.1X-enabled
networks, it is vulnerable to all of the threats that are present in
other RADIUS applications. For a discussion of these threats, see
[RFC2607], [RFC2865], [RFC3162], [RFC3579], and [RFC3576].
Vulnerabilities include:
Packet modification or forgery
Dictionary attacks
Known plaintext attacks
Replay
Outcome mismatches
802.11 integration
Key management issues
5.1. Packet Modification or Forgery
RADIUS, defined in [RFC2865], does not require all Access-Requests to
be authenticated or integrity protected. However, IEEE 802.1X is
based on EAP. As described in [3579], Section 3.1.:
The Message-Authenticator attribute MUST be used to protect all
Access-Request, Access-Challenge, Access-Accept, and Access-Reject
packets containing an EAP-Message attribute.
As a result, when used with IEEE 802.1X, all RADIUS packets MUST be
authenticated and integrity protected. In addition, as described in
[3579], Section 4.2.: