forked from takerum/vat_tf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcnn.py
51 lines (39 loc) · 2.88 KB
/
cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import tensorflow as tf
import numpy
import sys, os
import layers as L
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_float('keep_prob_hidden', 0.5, "dropout rate")
tf.app.flags.DEFINE_float('lrelu_a', 0.1, "lrelu slope")
tf.app.flags.DEFINE_boolean('top_bn', False, "")
def logit(x, is_training=True, update_batch_stats=True, stochastic=True, seed=1234):
h = x
rng = numpy.random.RandomState(seed)
h = L.conv(h, ksize=3, stride=1, f_in=3, f_out=128, seed=rng.randint(123456), name='c1')
h = L.lrelu(L.bn(h, 128, is_training=is_training, update_batch_stats=update_batch_stats, name='b1'), FLAGS.lrelu_a)
h = L.conv(h, ksize=3, stride=1, f_in=128, f_out=128, seed=rng.randint(123456), name='c2')
h = L.lrelu(L.bn(h, 128, is_training=is_training, update_batch_stats=update_batch_stats, name='b2'), FLAGS.lrelu_a)
h = L.conv(h, ksize=3, stride=1, f_in=128, f_out=128, seed=rng.randint(123456), name='c3')
h = L.lrelu(L.bn(h, 128, is_training=is_training, update_batch_stats=update_batch_stats, name='b3'), FLAGS.lrelu_a)
h = L.max_pool(h, ksize=2, stride=2)
h = tf.nn.dropout(h, keep_prob=FLAGS.keep_prob_hidden, seed=rng.randint(123456)) if stochastic else h
h = L.conv(h, ksize=3, stride=1, f_in=128, f_out=256, seed=rng.randint(123456), name='c4')
h = L.lrelu(L.bn(h, 256, is_training=is_training, update_batch_stats=update_batch_stats, name='b4'), FLAGS.lrelu_a)
h = L.conv(h, ksize=3, stride=1, f_in=256, f_out=256, seed=rng.randint(123456), name='c5')
h = L.lrelu(L.bn(h, 256, is_training=is_training, update_batch_stats=update_batch_stats, name='b5'), FLAGS.lrelu_a)
h = L.conv(h, ksize=3, stride=1, f_in=256, f_out=256, seed=rng.randint(123456), name='c6')
h = L.lrelu(L.bn(h, 256, is_training=is_training, update_batch_stats=update_batch_stats, name='b6'), FLAGS.lrelu_a)
h = L.max_pool(h, ksize=2, stride=2)
h = tf.nn.dropout(h, keep_prob=FLAGS.keep_prob_hidden, seed=rng.randint(123456)) if stochastic else h
h = L.conv(h, ksize=3, stride=1, f_in=256, f_out=512, seed=rng.randint(123456), padding="VALID", name='c7')
h = L.lrelu(L.bn(h, 512, is_training=is_training, update_batch_stats=update_batch_stats, name='b7'), FLAGS.lrelu_a)
h = L.conv(h, ksize=1, stride=1, f_in=512, f_out=256, seed=rng.randint(123456), name='c8')
h = L.lrelu(L.bn(h, 256, is_training=is_training, update_batch_stats=update_batch_stats, name='b8'), FLAGS.lrelu_a)
h = L.conv(h, ksize=1, stride=1, f_in=256, f_out=128, seed=rng.randint(123456), name='c9')
h = L.lrelu(L.bn(h, 128, is_training=is_training, update_batch_stats=update_batch_stats, name='b9'), FLAGS.lrelu_a)
h = tf.reduce_mean(h, reduction_indices=[1, 2]) # Global average pooling
h = L.fc(h, 128, 10, seed=rng.randint(123456), name='fc')
if FLAGS.top_bn:
h = L.bn(h, 10, is_training=is_training,
update_batch_stats=update_batch_stats, name='bfc')
return h