forked from bubbliiiing/yolo3-keras
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
347 lines (309 loc) · 17.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
import keras.backend as K
import numpy as np
import tensorflow as tf
from keras.backend.tensorflow_backend import set_session
from keras.callbacks import (EarlyStopping, ModelCheckpoint, ReduceLROnPlateau,
TensorBoard)
from keras.layers import Input, Lambda
from keras.models import Model
from keras.optimizers import Adam
from nets.loss import yolo_loss
from nets.yolo3 import yolo_body
from utils.utils import LossHistory, get_random_data
#---------------------------------------------------#
# 获得类和先验框
#---------------------------------------------------#
def get_classes(classes_path):
'''loads the classes'''
with open(classes_path) as f:
class_names = f.readlines()
class_names = [c.strip() for c in class_names]
return class_names
def get_anchors(anchors_path):
'''loads the anchors from a file'''
with open(anchors_path) as f:
anchors = f.readline()
anchors = [float(x) for x in anchors.split(',')]
return np.array(anchors).reshape(-1, 2)
#---------------------------------------------------#
# 训练数据生成器
#---------------------------------------------------#
def data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes, random=True):
n = len(annotation_lines)
i = 0
while True:
image_data = []
box_data = []
for b in range(batch_size):
if i==0:
np.random.shuffle(annotation_lines)
#---------------------------------------------------#
# 训练时进行数据的随机增强
# 验证时不进行数据的随机增强
#---------------------------------------------------#
image, box = get_random_data(annotation_lines[i], input_shape, random=random)
image_data.append(image)
box_data.append(box)
i = (i+1) % n
image_data = np.array(image_data)
box_data = np.array(box_data)
y_true = preprocess_true_boxes(box_data, input_shape, anchors, num_classes)
yield [image_data, *y_true], np.zeros(batch_size)
#---------------------------------------------------#
# 读入xml文件,并输出y_true
#---------------------------------------------------#
def preprocess_true_boxes(true_boxes, input_shape, anchors, num_classes):
assert (true_boxes[..., 4]<num_classes).all(), 'class id must be less than num_classes'
# 一共有三个特征层数
num_layers = len(anchors)//3
#-----------------------------------------------------------#
# 13x13的特征层对应的anchor是[116,90],[156,198],[373,326]
# 26x26的特征层对应的anchor是[30,61],[62,45],[59,119]
# 52x52的特征层对应的anchor是[10,13],[16,30],[33,23]
#-----------------------------------------------------------#
anchor_mask = [[6,7,8], [3,4,5], [0,1,2]]
#-----------------------------------------------------------#
# 获得框的坐标和图片的大小
#-----------------------------------------------------------#
true_boxes = np.array(true_boxes, dtype='float32')
input_shape = np.array(input_shape, dtype='int32')
#-----------------------------------------------------------#
# 通过计算获得真实框的中心和宽高
# 中心点(m,n,2) 宽高(m,n,2)
#-----------------------------------------------------------#
boxes_xy = (true_boxes[..., 0:2] + true_boxes[..., 2:4]) // 2
boxes_wh = true_boxes[..., 2:4] - true_boxes[..., 0:2]
#-----------------------------------------------------------#
# 将真实框归一化到小数形式
#-----------------------------------------------------------#
true_boxes[..., 0:2] = boxes_xy/input_shape[::-1]
true_boxes[..., 2:4] = boxes_wh/input_shape[::-1]
# m为图片数量,grid_shapes为网格的shape
m = true_boxes.shape[0]
grid_shapes = [input_shape//{0:32, 1:16, 2:8}[l] for l in range(num_layers)]
#-----------------------------------------------------------#
# y_true的格式为(m,13,13,3,85)(m,26,26,3,85)(m,52,52,3,85)
#-----------------------------------------------------------#
y_true = [np.zeros((m,grid_shapes[l][0],grid_shapes[l][1],len(anchor_mask[l]),5+num_classes),
dtype='float32') for l in range(num_layers)]
#-----------------------------------------------------------#
# [9,2] -> [1,9,2]
#-----------------------------------------------------------#
anchors = np.expand_dims(anchors, 0)
anchor_maxes = anchors / 2.
anchor_mins = -anchor_maxes
#-----------------------------------------------------------#
# 长宽要大于0才有效
#-----------------------------------------------------------#
valid_mask = boxes_wh[..., 0]>0
for b in range(m):
# 对每一张图进行处理
wh = boxes_wh[b, valid_mask[b]]
if len(wh)==0: continue
#-----------------------------------------------------------#
# [n,2] -> [n,1,2]
#-----------------------------------------------------------#
wh = np.expand_dims(wh, -2)
box_maxes = wh / 2.
box_mins = -box_maxes
#-----------------------------------------------------------#
# 计算所有真实框和先验框的交并比
# intersect_area [n,9]
# box_area [n,1]
# anchor_area [1,9]
# iou [n,9]
#-----------------------------------------------------------#
intersect_mins = np.maximum(box_mins, anchor_mins)
intersect_maxes = np.minimum(box_maxes, anchor_maxes)
intersect_wh = np.maximum(intersect_maxes - intersect_mins, 0.)
intersect_area = intersect_wh[..., 0] * intersect_wh[..., 1]
box_area = wh[..., 0] * wh[..., 1]
anchor_area = anchors[..., 0] * anchors[..., 1]
iou = intersect_area / (box_area + anchor_area - intersect_area)
#-----------------------------------------------------------#
# 维度是[n,] 感谢 消尽不死鸟 的提醒
#-----------------------------------------------------------#
best_anchor = np.argmax(iou, axis=-1)
for t, n in enumerate(best_anchor):
#-----------------------------------------------------------#
# 找到每个真实框所属的特征层
#-----------------------------------------------------------#
for l in range(num_layers):
if n in anchor_mask[l]:
#-----------------------------------------------------------#
# floor用于向下取整,找到真实框所属的特征层对应的x、y轴坐标
#-----------------------------------------------------------#
i = np.floor(true_boxes[b,t,0] * grid_shapes[l][1]).astype('int32')
j = np.floor(true_boxes[b,t,1] * grid_shapes[l][0]).astype('int32')
#-----------------------------------------------------------#
# k指的的当前这个特征点的第k个先验框
#-----------------------------------------------------------#
k = anchor_mask[l].index(n)
#-----------------------------------------------------------#
# c指的是当前这个真实框的种类
#-----------------------------------------------------------#
c = true_boxes[b, t, 4].astype('int32')
#-----------------------------------------------------------#
# y_true的shape为(m,13,13,3,85)(m,26,26,3,85)(m,52,52,3,85)
# 最后的85可以拆分成4+1+80,4代表的是框的中心与宽高、
# 1代表的是置信度、80代表的是种类
#-----------------------------------------------------------#
y_true[l][b, j, i, k, 0:4] = true_boxes[b, t, 0:4]
y_true[l][b, j, i, k, 4] = 1
y_true[l][b, j, i, k, 5+c] = 1
return y_true
config = tf.ConfigProto()
config.gpu_options.allocator_type = 'BFC' #A "Best-fit with coalescing" algorithm, simplified from a version of dlmalloc.
config.gpu_options.per_process_gpu_memory_fraction = 0.7
config.gpu_options.allow_growth = True
set_session(tf.Session(config=config))
#----------------------------------------------------#
# 检测精度mAP和pr曲线计算参考视频
# https://www.bilibili.com/video/BV1zE411u7Vw
#----------------------------------------------------#
if __name__ == "__main__":
#----------------------------------------------------#
# 获得图片路径和标签
#----------------------------------------------------#
annotation_path = '2007_train.txt'
#------------------------------------------------------#
# 训练后的模型保存的位置,保存在logs文件夹里面
#------------------------------------------------------#
log_dir = 'logs/'
#----------------------------------------------------#
# classes和anchor的路径,非常重要
# 训练前一定要修改classes_path,使其对应自己的数据集
#----------------------------------------------------#
classes_path = 'model_data/voc_classes.txt'
anchors_path = 'model_data/yolo_anchors.txt'
#------------------------------------------------------#
# 权值文件请看README,百度网盘下载
# 训练自己的数据集时提示维度不匹配正常
# 预测的东西都不一样了自然维度不匹配
#------------------------------------------------------#
weights_path = 'model_data/yolo_weights.h5'
#------------------------------------------------------#
# 输入的shape大小
#------------------------------------------------------#
input_shape = (416,416)
#------------------------------------------------------#
# 是否对损失进行归一化,用于改变loss的大小
# 用于决定计算最终loss是除上batch_size还是除上正样本数量
#------------------------------------------------------#
normalize = False
#----------------------------------------------------#
# 获取classes和anchor
#----------------------------------------------------#
class_names = get_classes(classes_path)
anchors = get_anchors(anchors_path)
#------------------------------------------------------#
# 一共有多少类和多少先验框
#------------------------------------------------------#
num_classes = len(class_names)
num_anchors = len(anchors)
K.clear_session()
#------------------------------------------------------#
# 创建yolo模型
#------------------------------------------------------#
image_input = Input(shape=(None, None, 3))
h, w = input_shape
print('Create YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))
model_body = yolo_body(image_input, num_anchors//3, num_classes)
#------------------------------------------------------#
# 载入预训练权重
#------------------------------------------------------#
print('Load weights {}.'.format(weights_path))
model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
#------------------------------------------------------#
# 在这个地方设置损失,将网络的输出结果传入loss函数
# 把整个模型的输出作为loss
#------------------------------------------------------#
y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], \
num_anchors//3, num_classes+5)) for l in range(3)]
loss_input = [*model_body.output, *y_true]
model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5, 'normalize': normalize})(loss_input)
model = Model([model_body.input, *y_true], model_loss)
#------------------------------------------------------#
# 主干特征提取网络特征通用,冻结训练可以加快训练速度
# 也可以在训练初期防止权值被破坏。
# 提示OOM或者显存不足请调小Batch_size
#------------------------------------------------------#
freeze_layers = 184
for i in range(freeze_layers): model_body.layers[i].trainable = False
print('Freeze the first {} layers of total {} layers.'.format(freeze_layers, len(model_body.layers)))
#-------------------------------------------------------------------------------#
# 训练参数的设置
# logging表示tensorboard的保存地址
# checkpoint用于设置权值保存的细节,period用于修改多少epoch保存一次
# reduce_lr用于设置学习率下降的方式
# early_stopping用于设定早停,val_loss多次不下降自动结束训练,表示模型基本收敛
#-------------------------------------------------------------------------------#
logging = TensorBoard(log_dir=log_dir)
checkpoint = ModelCheckpoint(log_dir + 'ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5',
monitor='val_loss', save_weights_only=True, save_best_only=False, period=1)
reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=3, verbose=1)
early_stopping = EarlyStopping(monitor='val_loss', min_delta=0, patience=10, verbose=1)
loss_history = LossHistory(log_dir)
#----------------------------------------------------------------------#
# 验证集的划分在train.py代码里面进行
# 2007_test.txt和2007_val.txt里面没有内容是正常的。训练不会使用到。
# 当前划分方式下,验证集和训练集的比例为1:9
#----------------------------------------------------------------------#
val_split = 0.1
with open(annotation_path) as f:
lines = f.readlines()
np.random.seed(10101)
np.random.shuffle(lines)
np.random.seed(None)
num_val = int(len(lines)*val_split)
num_train = len(lines) - num_val
#------------------------------------------------------#
# 主干特征提取网络特征通用,冻结训练可以加快训练速度
# 也可以在训练初期防止权值被破坏。
# Init_Epoch为起始世代
# Freeze_Epoch为冻结训练的世代
# Epoch总训练世代
# 提示OOM或者显存不足请调小Batch_size
#------------------------------------------------------#
if True:
Init_epoch = 0
Freeze_epoch = 50
batch_size = 8
learning_rate_base = 1e-3
model.compile(optimizer=Adam(lr=learning_rate_base), loss={
'yolo_loss': lambda y_true, y_pred: y_pred})
epoch_size = num_train // batch_size
epoch_size_val = num_val // batch_size
if epoch_size == 0 or epoch_size_val == 0:
raise ValueError("数据集过小,无法进行训练,请扩充数据集。")
print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size))
model.fit_generator(data_generator(lines[:num_train], batch_size, input_shape, anchors, num_classes, random=True),
steps_per_epoch=epoch_size,
validation_data=data_generator(lines[num_train:], batch_size, input_shape, anchors, num_classes, random=False),
validation_steps=epoch_size_val,
epochs=Freeze_epoch,
initial_epoch=Init_epoch,
callbacks=[logging, checkpoint, reduce_lr, early_stopping, loss_history])
model.save_weights(log_dir + 'trained_weights_stage_1.h5')
for i in range(freeze_layers): model_body.layers[i].trainable = True
if True:
Freeze_epoch = 50
Epoch = 100
batch_size = 4
learning_rate_base = 1e-4
model.compile(optimizer=Adam(lr=learning_rate_base), loss={
'yolo_loss': lambda y_true, y_pred: y_pred})
epoch_size = num_train // batch_size
epoch_size_val = num_val // batch_size
if epoch_size == 0 or epoch_size_val == 0:
raise ValueError("数据集过小,无法进行训练,请扩充数据集。")
print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size))
model.fit_generator(data_generator(lines[:num_train], batch_size, input_shape, anchors, num_classes, random=True),
steps_per_epoch=epoch_size,
validation_data=data_generator(lines[num_train:], batch_size, input_shape, anchors, num_classes, random=False),
validation_steps=epoch_size_val,
epochs=Epoch,
initial_epoch=Freeze_epoch,
callbacks=[logging, checkpoint, reduce_lr, early_stopping, loss_history])
model.save_weights(log_dir + 'last1.h5')