Skip to content

hi2p-perim/minpt

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

minpt: A path tracer in 300 lines of C++

Teaser

minpt is a path tracer. The entire code is written with 300 lines of code in C++, without any dependencies except for standard libraries and OpenMP. This project is inspired and motivated by great smallpt path tracer by Kevin Beason, which can generate beautiful image of Cornell Box only with 100 lines of code. The purpose of this project is to answer a question - "what I can do if we are allowed to add a few times more codes than smallpt, with the power of modern standard libraries of C++". This is what I did. I tried to introduce various features which we can often find in various rendering systems, within three times more code than smallpt - 300 lines of code.

Features

  • Global illumination renderer with path tracing
  • 300 lines, 80 columns of C++ code
  • No library dependency except for standard libraries and OpenMP
  • Triangle mesh support
  • OBJ model support, including MLT files (partial)
  • Acceleration structure with SAHBVH
  • Parallel rendering support via OpenMP
  • Parallel BVH construction
  • Diffuse, specular, and glossy BSDFs
  • Cook-Torrance model with anisotropic GGX normal distribution
  • Texture mapping with alpha textures
  • Area light, environment light support
  • Next event estimation (NEE)
  • Importance sampling for BSDFs and environment light
  • Multiple importance sampling among NEE and BSDF sampling
  • Pinhole camera / realistic camera

Code

#define _CRT_SECURE_NO_WARNINGS
#include <random>
#include <algorithm>
#include <numeric>
#include <optional>
#include <fstream>
#include <unordered_map>
#include <filesystem>
#include <queue>
#include <thread>
#include <atomic>
#include <condition_variable>
#include <cstring>
#include <omp.h>
#ifdef _MSC_VER
using namespace std; namespace fs=experimental::filesystem; using I=int;
I bswap(I x){return _byteswap_ulong(x);} string pp(string p){return p;}
#elif defined(__GNUC__)
using namespace std; namespace fs=filesystem; using I=int;
I bswap(I x){return __builtin_bswap32(x);}
string pp(string p){replace(p.begin(),p.end(),'\\','/'); return p;}
#endif
template<class T> using op=optional<T>; using F=double;
using C=char; constexpr F Inf=1e+10,Eps=1e-4,Pi=3.14159265358979323846;
struct V{F x,y,z; V(F v=0):V(v,v,v){} V(F x,F y,F z):x(x),y(y),z(z){}
 F operator[](I i)const{return(&x)[i];} F m()const{return std::max({x,y,z});}};
V operator+(V a,V b){return{a.x+b.x,a.y+b.y,a.z+b.z};}
V operator-(V a,V b){return{a.x-b.x,a.y-b.y,a.z-b.z};}
V operator*(V a,V b){return{a.x*b.x,a.y*b.y,a.z*b.z};}
V operator/(V a,V b){return{a.x/b.x,a.y/b.y,a.z/b.z};}
V operator-(V v){return{-v.x,-v.y,-v.z};} F sq(F v){return v*v;}
V vmin(V a,V b){return{min(a.x,b.x),min(a.y,b.y),min(a.z,b.z)};}
V vmax(V a,V b){return{max(a.x,b.x),max(a.y,b.y),max(a.z,b.z)};}
F dot(V a,V b){return a.x*b.x+a.y*b.y+a.z*b.z;}
V norm(V v){return v/sqrt(dot(v,v));} V refl(V w,V n){return 2*dot(w,n)*n-w;}
V intp(V a,V b,V c,F u,F v) {return a*(1-u-v)+b*u+c*v;}
V cross(V a,V b){return{a.y*b.z-a.z*b.y,a.z*b.x-a.x*b.z,a.x*b.y-a.y*b.x};}
tuple<V,V> odr(V n){F s=copysign(1,n.z),a=-1/(s+n.z),b=n.x*n.y*a;
 V u(1+s*n.x*n.x*a,s*b,-s*n.x),v(b,s+n.y*n.y*a,-n.y); return{u,v};}
op<V> refr(V wi,V n,F et){F t=dot(wi,n),t2=1-et*et*(1-t*t);
 return t2>0?et*(n*t-wi)-n*sqrt(t2):op<V>{};}
struct Rng{mt19937 eng; uniform_real_distribution<F> dist;
 Rng(){}; Rng(I seed){eng.seed(seed); dist.reset();}
 F u(){return dist(eng);} V uD(){F r=sqrt(u()),t=2*Pi*u();
  F x=r*cos(t),y=r*sin(t); return V(x,y,sqrt(max(.0,1-x*x-y*y)));}};
struct Dist{vector<F> c{0}; void add(F v){c.push_back(c.back()+v);}
 void norm(){F sum=c.back(); for(F& v:c){v/=sum;}}
 F p(I i)const{return (i<0||i+1>=I(c.size()))?0:c[i+1]-c[i];}
 I samp(Rng& rn)const{auto it=upper_bound(c.begin(),c.end(),rn.u());
  return clamp(I(distance(c.begin(),it))-1,0,I(c.size())-2);}};
struct Dist2{vector<Dist> ds; Dist m; I w,h;
 void init(const vector<F>& v,I a,I b){w=a; h=b; ds.assign(h,{});
  for(I i=0;i<h;i++){auto& d=ds[i]; for(I j=0;j<w;j++){d.add(v[i*w+j]);}
   m.add(d.c.back()); d.norm();} m.norm();}
 F p(F u,F v)const{I y=min(I(v*h),h-1); return m.p(y)*ds[y].p(I(u*w))*w*h;}
 tuple<F,F> samp(Rng& rn)const{I y=m.samp(rn),x=ds[y].samp(rn);
  return{(x+rn.u())/w,(y+rn.u())/h};}}; struct Ind{I p=-1,t=-1,n=-1;};
namespace T{enum{None=0,AreaL=1<<0,EnvL=1<<1,E=1<<2,D=1<<3,G=1<<4,M=1<<5,
 FresRefl=1<<6,FresTran=1<<7,PRefl=1<<8,Refl=D|G|PRefl|FresRefl,L=AreaL|EnvL,
 Tran=FresTran|M,Fres=FresRefl|FresTran,S=PRefl|Fres|M,NonS=D|G};}
struct Geo{vector<V> ps,ns,ts;}; struct R{V o,d;}; struct Surf{V p,n,t,u,v;
 Surf(){} Surf(V p,V n,V t):p(p),n(n),t(t){tie(u,v)=odr(n);}
 bool op(V wi,V wo)const{return dot(wi,n)*dot(wo,n)<=0;}
 tuple<V,V,V> obn(V wi)const{I i=dot(wi,n)>0;return{i?n:-n,u,i?v:-v};}};
struct H{Surf sp; struct Obj* o;}; struct Tex{I w,h; vector<F> cs,as;
 I fl(I i){I j=i/3,x=j%w,y=j/w; return 3*((h-y-1)*w+x)+i%3;}
 F pf(I i,F e,vector<uint8_t>& ct){return pow(F(ct[fl(i)])/e,2.2);}
 F pf(I i,F e,vector<float>& ct){if(e<0){return ct[fl(i)];}
  auto m=bswap(*(int32_t*)&ct[fl(i)]); return *(float*)&m;}
 template <class T> void loadpxm(vector<F>& c,string p){puts(p.c_str());
  static vector<T> ct; FILE* f=fopen(p.c_str(),"rb"); if(!f){return;}
  F e; fscanf(f,"%*s %d %d %lf%*c",&w,&h,&e); I sz=w*h*3,s=sizeof(T);
  ct.assign(sz,0); c.assign(sz,0); fread(ct.data(),s,sz,f);
  for(I i=0;i<sz;i++){c[i]=pf(i,e,ct);} fclose(f);}
 void loadpfm(string p){loadpxm<float>(cs,p);} void load(string p){
  auto b=fs::path(p); auto pc=b.replace_extension(".ppm").string(); 
  auto pa=(b.parent_path()/fs::path(b.stem().string()+"_alpha.ppm")).string();
  loadpxm<uint8_t>(cs,pc); loadpxm<uint8_t>(as,pa);}
 V ev(V t,bool alpha=0)const{F u=t.x-floor(t.x),v=t.y-floor(t.y);
  I x=clamp(I(u*w),0,w-1),y=clamp(I(v*h),0,h-1),i=w*y+x;
  return alpha?V(as[3*i]):V(cs[3*i],cs[3*i+1],cs[3*i+2]);}};
struct B{V mi=V(Inf),ma=V(-Inf); V center()const{return (mi+ma)*.5;}
 F sa()const{V d=ma-mi; return 2*(d.x*d.y+d.y*d.z+d.z*d.x);}
 V operator[](I i)const{return(&mi)[i];}
 bool isect(const R& r,F tl,F th)const{for(I i=0;i<3;i++){F vd=1/r.d[i];
  F t1=(mi[i]-r.o[i])*vd,t2=(ma[i]-r.o[i])*vd;if(vd<0){swap(t1,t2);}
  tl=max(t1,tl); th=min(t2,th); if(th<tl){return 0;}} return 1;};};
B merge(B b,V p){return{vmin(b.mi,p),vmax(b.ma,p)};}
B merge(B a,B b){return{vmin(a.mi,b.mi),vmax(a.ma,b.ma)};}
F gt(const Surf& s1, const Surf& s2){V d=s2.p-s1.p; F L2=dot(d,d);
 d=d/sqrt(L2); return abs(dot(s1.n,d))*abs(dot(s2.n,-d))/L2;};
struct S{I t; R r; V w; F pcs;}; struct SL{V wo; F d; V fs; F p;};
struct Mat{I t=T::None; V Kd,Ks,Ke; Tex* mapKd=0; F Ni,Ns,an,ax,ay;};
struct Lens{F cr,t,e,ar;}; struct Obj{I t; Mat* M=0; vector<Ind> fs;
 struct{V p,u,v,w; F tf,a,fs,id,ss; vector<Lens> ls; vector<op<B>> pbs;} E;
 struct{Dist dist; F invA;} L; struct{Tex map; F rot; Dist2 dist;} EL;
 op<R> trl(R r)const{F z=0; for(I i=I(E.ls.size())-1;i>=0;i--){
  auto& l=E.ls[i]; z-=l.t; struct LH{F t; V n;}; auto h=[&]()->op<LH>{
   if(l.cr==0){F t=(z-r.o.z)/r.d.z; return t<0?op<LH>{}:LH{t,{}};}
   V c(0,0,z+l.cr),oc=c-r.o; F b=dot(oc,r.d),dt=b*b-dot(oc,oc)+l.cr*l.cr;
   if(dt<0){return{};} F t0=b-sqrt(dt),t1=b+sqrt(dt);
   F t=(r.d.z>0)^(l.cr<0)?min(t0,t1):max(t0,t1); if(t<0){return{};}
   V n=(r.o+t*r.d-c)/l.cr; n=dot(n,-r.d)<0?-n:n; return LH{t,n}; }();
  if(!h){return{};} V p=r.o+r.d*h->t; if(p.x*p.x+p.y*p.y>l.ar*l.ar){return{};}
  r.o=p; if(l.cr==0){continue;} F et=l.e/(i>0&&E.ls[i-1].e!=0?E.ls[i-1].e:1);
  auto wt=refr(-r.d,h->n,et); if(!wt){return{};} r.d=*wt; } return r; }
 F ffd(F id)const{op<R> r; auto& lb=E.ls.back(); for(I i=9;i>0;i--){
  if(r=trl({V(0,0,-lb.t+id),norm(V(lb.ar*i/10,0,-id))})){break;}}
  if(!r){return Inf;} F t=-r->o.x/r->d.x,z=(r->o+t*r->d).z;
  F sz=0; for(auto& l:E.ls){sz+=l.t;} return z<sz?-z:Inf;};
 void initE(string p,V e,V c,V u,F fv,F fd,F fs,F ss,F a){puts(p.c_str());
  E.p=e; E.tf=tan(fv*Pi/180*.5); E.a=a; E.ss = ss; E.fs=fs*.001; 
  E.w=norm(e-c); E.u=norm(cross(u,E.w)); E.v=cross(E.w,E.u); C l[4096];
  ifstream f(p); while(f.getline(l,4096)){if(l[0]=='#'||l[0]=='\0'){continue;}
   F cr,t,eta,ar; sscanf(l,"%lf %lf %lf %lf",&cr,&t,&eta,&ar);
   E.ls.push_back({cr*.001,t*.001,eta,ar*.001*.5});} if(E.ls.empty()){return;}
  F lo=Eps,hi=Inf; for(I i=0;i<99;i++){F mi=(lo+hi)*.5; (ffd(mi)<fd?hi:lo)=mi;}
  E.id=hi; Rng rn(42); I n=64; E.pbs.assign(n,{});
  F cfv=-1,sy=sqrt(E.fs*E.fs/(1+E.a*E.a)),sx=E.a*sy; I m=1<<12;
  for(I i=0;i<n;i++){B b; bool f=0; auto& lb=E.ls.back(); V p(0,0,-lb.t+E.id);
   for(I j=0;j<m;j++){p.x=(i+rn.u())/n*E.fs*.5; F r=sqrt(rn.u()),t=2*Pi*rn.u();
    V pl(r*cos(t)*lb.ar,r*sin(t)*lb.ar,-lb.t); auto rt=trl({p,norm(pl-p)});
    if(rt){f=1; b=merge(b,pl); if(p.x<sx*.5){cfv=max(cfv,rt->d.z);}}}
   if(f){E.pbs[i]=b;}} printf("%lf\n",atan(tan(Pi-acos(cfv))/E.a)*180/Pi*2);}
 void initEL(string p,F rot){EL.map.loadpfm(p); EL.rot=rot*Pi/180;
  auto& cs=EL.map.cs; I w=EL.map.w,h=EL.map.h; vector<F> ls(w*h);
  for(I i=0;i<w*h;i++){V v(cs[3*i],cs[3*i+1],cs[3*i+2]);
   ls[i]=v.m()*sin(Pi*(i/w+.5)/h);} EL.dist.init(ls,w,h);}
 void initAreaL(const Geo& G){for(size_t fi=0;fi<fs.size();fi+=3){
   V a=G.ps[fs[fi].p],b=G.ps[fs[fi+1].p],c=G.ps[fs[fi+2].p],cr=cross(b-a,c-a);
   L.dist.add(sqrt(dot(cr,cr))*.5);} L.invA=1/L.dist.c.back(); L.dist.norm();}
 F D(V wh,V u,V v,V n)const{F x=M->ax,y=M->ay;
  return 1/(Pi*x*y*sq(sq(dot(wh,u)/x)+sq(dot(wh,v)/y)+sq(dot(wh,n))));}
 F G(V wi,V wo,V u,V v,V n)const{auto G1=[&](V w){F c=dot(w,n),s=sqrt(1-c*c);
  F cp=dot(w,u)/s,cs=dot(w,v)/s,a2=sq(cp*M->ax)+sq(cs*M->ay);
  return c==0?0:2/(1+sqrt(1+a2*sq(s/c)));}; return G1(wi)*G1(wo);}
 op<S> samp(Rng& rn,I ty,const Surf& sp,const V& wi)const{
  if(ty&T::E){V rp=2*wi-1; I n=I(E.pbs.size()); auto& lb=E.ls.back();
   if(E.ls.empty()){V d=-norm(V(E.a*E.tf*rp.x,E.tf*rp.y,1));
     return S{T::E,E.p,E.u*d.x+E.v*d.y+E.w*d.z,V(1),1};}
   F sy=sqrt(E.fs*E.fs/(1+E.a*E.a)); V o=rp*V(E.a*sy*.5,sy*.5,0); o.z=E.id;
   F l=sqrt(o.x*o.x+o.y*o.y); I i=clamp(I(l/E.fs*2*n),0,n-1); auto& b=E.pbs[i];
   if(!b){return {};} V bl=b->ma-b->mi; V p=b->mi+bl*V(rn.u(),rn.u(),0);
   F s=l!=0?o.y/l:0,c=l!=0?o.x/l:1; V d=norm(V(c*p.x-s*p.y,s*p.x+c*p.y,p.z)-o);
   auto r=trl({o,d}); if(!r){return{};} F A=bl.x*bl.y,Z=lb.t+E.id;
   F w=d.z*d.z*d.z*d.z*A/(Z*Z); o=r->o; d=r->d; o=E.u*o.x+E.v*o.y+E.w*o.z+E.p;
   d=E.u*d.x+E.v*d.y+E.w*d.z; return S{T::E,o,d,V(w*E.ss),1};}
  else if(ty&T::NonS){auto* mp=M->mapKd; V Kd=(mp?mp->ev(sp.t):M->Kd);
   F wd=Kd.m(),ws=M->Ks.m(); if(wd==0&&ws==0){wd=1;ws=0;}
   F s=wd+ws; wd/=s; ws/=s; ty=rn.u()<wd?T::D:T::G;
   if(ty&T::D){auto[n,u,v]=sp.obn(wi); bool usea=mp&&!mp->as.empty();
    F a=usea?mp->ev(sp.t,1).x:1; V d=rn.uD(); return rn.u()>a ?
     S{T::M,sp.p,-wi,V(1),wd}:S{T::D,sp.p,u*d.x+v*d.y+n*d.z,Kd,wd};}
   else if(ty&T::G){auto[n,u,v]=sp.obn(wi); F u1=rn.u()*2*Pi,u2=rn.u();
    V wh=norm(sqrt(u2/(1-u2))*(M->ax*cos(u1)*u+M->ay*sin(u1)*v)+n);
    V wo=refl(wi,wh); if(sp.op(wi,wo)){return{};}
    return S{T::G,sp.p,wo,ev(T::G,sp,wi,wo)/pdf(T::G,sp,wi,wo),ws};}}
  else if(ty&T::PRefl){return S{T::PRefl,sp.p,refl(wi,sp.n),V(1),1};}
  else if(ty&T::Fres){I i=dot(wi,sp.n)>0;V n=i?sp.n:-sp.n;F et=i?1/M->Ni:M->Ni;
   auto wt=refr(wi,n,et); F Fr=!wt?1:[&](){F cos=i?dot(wi,sp.n):dot(*wt,sp.n);
    F r=(1-M->Ni)/(1+M->Ni); r=r*r; return r+(1-r)*pow(1-cos,5);}();
   return rn.u()<Fr?S{T::FresRefl,sp.p,refl(wi,sp.n),V(1),1}
    : S{T::FresTran,sp.p,*wt,V(et*et),1};} return{};}
 F pdf(I type,const Surf& sp,const V& wi,const V& wo)const{
  if(sp.op(wi,wo)){return 0;} if(type&T::D){return 1/Pi;}
  else if(type&T::G){ V wh=norm(wi+wo); auto[n,u,v]=sp.obn(wi);
   return D(wh,u,v,n)*dot(wh,n)/(4*dot(wo,wh)*dot(wo,n));} return 0;}
 op<SL> sampL(Rng& rn,const Geo& G,const Surf& sp)const{
  if(t&T::AreaL){I i=L.dist.samp(rn); F s=sqrt(max(.0,rn.u()));
   V a=G.ps[fs[3*i].p],b=G.ps[fs[3*i+1].p],c=G.ps[fs[3*i+2].p];
   Surf spL(intp(a,b,c,1-s,rn.u()*s),norm(cross(b-a,c-a)),{});
   V pp=spL.p-sp.p,wo=norm(pp); F p=pdfL(sp,spL,-wo);
   return p==0?op<SL>{}:SL{wo,sqrt(dot(pp,pp)),ev(T::AreaL,spL,{},-wo),p};}
  else if(t&&T::EnvL){auto[u,v]=EL.dist.samp(rn); F t=Pi*v,st=sin(t);
   F p=2*Pi*u+EL.rot; V wo(st*sin(p),cos(t),st*cos(p)); F pL=pdfL(sp,{},-wo);
   return pL==0?op<SL>{}:SL{wo,Inf,ev(T::EnvL,{},{},-wo),pL};} return{};}
 F pdfL(const Surf& sp, const Surf& spL, const V& wo)const{
  if(t&T::AreaL){F G=gt(sp,spL); return G==0?0:L.invA/G;}
  else if(t&&T::EnvL){V d=-wo; F at=atan2(d.x,d.z); at=at<0?at+2*Pi:at;
   F t=(at-EL.rot)*.5/Pi; F u=t-floor(t),v=acos(d.y)/Pi; F st=sqrt(1-d.y*d.y);
   return st==0?0:EL.dist.p(u,v)/(2*Pi*Pi*st*abs(dot(-wo,sp.n)));} return 0;}
 V ev(I ty,const Surf& sp,const V& wi,const V& wo)const{
  if(ty&T::AreaL){return dot(wo,sp.n)<=0 ? V() : M->Ke;}
  else if(ty&T::EnvL){V d=-wo; F at=atan2(d.x,d.z); at=at<0?at+2*Pi:at;
   F t=(at-EL.rot)*.5/Pi; return EL.map.ev({t-floor(t),acos(d.y)/Pi,0});}
  else if(ty&T::G){if(sp.op(wi,wo)){return{};} V wh=norm(wi+wo);
   auto[n,u,v]=sp.obn(wi); V Fr=M->Ks+(1-M->Ks)*pow(1-dot(wo,wh),5);
   return M->Ks*Fr*(D(wh,u,v,n)*G(wi,wo,u,v,n)/(4*dot(wi,n)*dot(wo,n)));}
  else if(ty&T::D){if(sp.op(wi,wo)){return{};}
   auto* mp=M->mapKd; F a=(mp&&!mp->as.empty())?mp->ev(sp.t,1).x:1;
   return (mp?mp->ev(sp.t):M->Kd)*(a/Pi);} return{};}};
struct Scene{Geo G; Obj E; vector<Obj> os; vector<unique_ptr<Tex>> ts;
 vector<Mat> ms; vector<I> Ls; unordered_map<string,I> msmap,tsmap;
 bool useEL=0; Obj* envL(){return useEL?&os.front():nullptr;}
 tuple<const Obj&,F> sampL(Rng& rn)const{I n=I(Ls.size());
  I i=clamp(I(rn.u()*n),0,n-1); return{os.at(Ls[i]),1./n};}
 bool ws(C c){return c==' '||c=='\t';}; F pdfL(){return 1./Ls.size();}
 bool cm(C*& t,const C* c,I n){return !strncmp(t,c,n)&&ws(t[n]);}
 void ss(C*& t){t+=strspn(t," \t");} void sc(C*& t){t+=strcspn(t,"/ \t");}
 F nf(C*& t){ss(t); F v=atof(t); sc(t); return v;}
 V nv(C*& t){V v; v.x=nf(t); v.y=nf(t); v.z=nf(t); return v;}
 I pi(I i,I vn){return i<0?vn+i:i>0?i-1:-1;} Ind pind(C*& t){Ind i; ss(t);
  i.p=pi(atoi(t),I(G.ps.size())); sc(t); if(t++[0]!='/'){return i;}
  i.t=pi(atoi(t),I(G.ts.size())); sc(t); if(t++[0]!='/'){return i;}
  i.n=pi(atoi(t),I(G.ns.size())); sc(t); return i;}
 void nn(C*& t,C name[]){sscanf(t,"%s",name);};
 void loadmtl(string p){ifstream f(p); C l[4096],name[256]; puts(p.c_str());
  while(f.getline(l,4096)){auto* t=l; ss(t); if(cm(t,"newmtl",6)){
    nn(t+=7,name); msmap[name]=I(ms.size()); ms.emplace_back(); continue;}
   if(ms.empty()){continue;} Mat& m=ms.back(); if(cm(t,"Kd",2)){m.Kd=nv(t+=3);}
   else if(cm(t,"Ks",2)) m.Ks=nv(t+=3); else if(cm(t,"Ni",2)) m.Ni=nf(t+=3);
   else if(cm(t,"Ns",2)) m.Ns=nf(t+=3); else if(cm(t,"aniso",5)) m.an=nf(t+=5);
   else if(cm(t,"Ke",2)){m.Ke=nv(t+=3); m.t|=m.Ke.m()>0?T::L:0;}
   else if(cm(t,"illum",5)){ss(t+=6); I v=atoi(t);
    m.t|=v==7?T::Fres:v==5?T::PRefl:T::NonS;}
   else if(cm(t,"map_Kd",6)){nn(t+=7,name); auto it=tsmap.find(name);
    if(it!=tsmap.end()){m.mapKd=ts[it->second].get(); continue;}
    tsmap[name]=I(ts.size()); ts.emplace_back(new Tex);
    ts.back()->load(pp((fs::path(p).remove_filename()/name).string()));
    m.mapKd=ts.back().get();} else{continue;}}}
 void load(string p,string env,F rot){C l[4096],name[256]; ifstream f(p); 
  if(!env.empty()){useEL=1; os.push_back({T::EnvL}); os.back().initEL(env,rot);
  Ls.push_back(0);} while(f.getline(l,4096)){C* t=l; ss(t); I on=I(os.size());
   if     (cm(t,"v" ,1)){G.ps.emplace_back(nv(t+=2));}
   else if(cm(t,"vn",2)){G.ns.emplace_back(nv(t+=3));}
   else if(cm(t,"vt",2)){G.ts.emplace_back(nv(t+=3));}
   else if(cm(t,"f" ,1)){t+=2; if(ms.empty()){ms.push_back({T::D,1});
    os.push_back({T::D,&ms.back()});} Ind is[4]; for(auto& i:is) i=pind(t);
    auto& fs=os.back().fs; fs.insert(fs.end(),{is[0],is[1],is[2]});  
    if(is[3].p!=-1){fs.insert(fs.end(),{is[0],is[2],is[3]});}}
   else if(cm(t,"usemtl",6)){t+=7; nn(t,name); auto& M=ms[msmap.at(name)];
    os.push_back({!M.t?(M.t=T::NonS):M.t,&M}); if(M.t&T::L) Ls.push_back(on);}
   else if(cm(t,"mtllib",6)){nn(t+=7,name);
    loadmtl(pp((fs::path(p).remove_filename()/name).string()));}else continue;}
  for(auto& o:os) if(o.M&&o.M->t&T::AreaL){o.initAreaL(G);}
  for(auto& m:ms){if(!(m.t&T::NonS)){continue;} F r=2/(2+m.Ns);
   F as=sqrt(1-m.an*.9); m.ax=max(1e-3,r/as); m.ay=max(1e-3,r*as);}}
 struct TH{F t,u,v;}; struct Tri{V p1,e1,e2,n; B b; V c; I oi,fi;
  Tri(const V& p1,const V& p2,const V& p3,I oi,I fi)
   : p1(p1),oi(oi),fi(fi){e1=p2-p1; e2=p3-p1; n=norm(cross(p2-p1,p3-p1));
   b=merge(b,p1); b=merge(b,p2); b=merge(b,p3); c=b.center();}
  op<TH> isect(const R& r,F tl,F th)const{V p=cross(r.d,e2),tv=r.o-p1;
   V q=cross(tv,e1); F d=dot(e1,p),ad=abs(d),s=copysign(1,d);
   F u=dot(tv,p)*s,v=dot(r.d,q)*s; if(ad<1e-8||u<0||v<0||u+v>ad) return{};
   F t=dot(e2,q)/d; return t<tl||th<t ? op<TH>{} : TH{t,u/ad,v/ad};}};
 struct N{B b; bool leaf=0; I s,e,c1,c2;}; vector<N> ns;
 vector<Tri> trs; vector<I> ti; void build(){queue<tuple<I,I,I>> q;
  for(size_t oi=0;oi<os.size();oi++){auto& fs=os[oi].fs;
   for(size_t fi=0;fi<fs.size();fi+=3){V a=G.ps[fs[fi].p],b=G.ps[fs[fi+1].p];
    V c=G.ps[fs[fi+2].p]; trs.emplace_back(a,b,c,I(oi),I(fi));}}
  I nt=I(trs.size()); q.push({0,0,nt}); ns.assign(2*nt-1,{}); ti.assign(nt,0);
  iota(ti.begin(),ti.end(),0); mutex mu; condition_variable cv;
  atomic<I> pr=0; I nn=1; bool done=0; auto process=[&](){while(!done){
   auto [ni,s,e]=[&]()->tuple<I,I,I>{unique_lock<mutex> lk(mu);
    if(q.empty()){cv.wait(lk,[&](){return done||!q.empty();});}
    if(done) return{}; auto v=q.front(); q.pop(); return v;}();
   if(done) break; N& n=ns[ni]; for(I i=s;i<e;i++) n.b=merge(n.b,trs[ti[i]].b);
   auto st=[&,s=s,e=e](I ax){auto cmp=[&](I i1, I i2){
    return trs[i1].c[ax]<trs[i2].c[ax];}; sort(&ti[s],&ti[e-1]+1,cmp);};
   auto lf=[&,s=s,e=e](){n.leaf=1; n.s=s; n.e=e; pr+=e-s;if(pr==I(trs.size())){
    done=1;cv.notify_all();}}; if(e-s<2){lf();continue;} F b=Inf; I bi,ba;
   for(I a=0;a<3;a++){thread_local vector<F> l(nt+1),r(nt+1); st(a); B bl,br;
    for(I i=0;i<=e-s;i++){I j=e-s-i; l[i]=bl.sa()*i; r[j]=br.sa()*i;
    bl=i<e-s?merge(bl,trs[ti[s+i]].b):bl;br=j>0?merge(br,trs[ti[s+j-1]].b):br;}
    for(I i=1;i<e-s;i++){F c=1+(l[i]+r[i])/n.b.sa();if(c<b){b=c;bi=i;ba=a;}}}
   if(b>e-s){lf(); continue;} st(ba); I m=s+bi; unique_lock<mutex> lk(mu);
   q.push({n.c1=nn++,s,m}); q.push({n.c2=nn++,m,e}); cv.notify_one();}};
  vector<thread> ths(omp_get_max_threads());
  for(auto& th:ths){th=thread(process);} for(auto& th:ths){th.join();}}
 op<H> isect(const R& r,F tl=Eps,F th=Inf){op<TH> mh,h; I mi,s[99]{},si=0;
  while(si>=0){auto& n=ns.at(s[si--]); if(!n.b.isect(r,tl,th)){continue;}
   if(!n.leaf){s[++si]=n.c1; s[++si]=n.c2; continue;}
   for(I i=n.s;i<n.e;i++) if(h=trs[ti[i]].isect(r,tl,th)){mh=h;th=h->t;mi=i;}}
  if(!mh){return{};} Tri& tr=trs[ti[mi]]; Obj& o=os[tr.oi]; V p=r.o+th*r.d;
  F u=mh->u,v=mh->v; Ind& i=o.fs[tr.fi],j=o.fs[tr.fi+1],k=o.fs[tr.fi+2];
  V n=i.n<0?tr.n:norm(intp(G.ns[i.n],G.ns[j.n],G.ns[k.n],u,v));
  V t=i.t<0?0:intp(G.ts[i.t],G.ts[j.t],G.ts[k.t],u,v); return H{{p,n,t},&o};}};
I main(I,C**v){Scene sc; puts(v[1]); sc.load(v[1],v[2],atof(v[7])); sc.build();
 I ns=atoi(v[5]),mb=atoi(v[6]),w=atoi(v[8]),h=atoi(v[9]),sz=w*h*3;
 vector<V> D(w*h,V()); sc.E.initE(v[3],V(atof(v[10]),atof(v[11]),atof(v[12])),
  V(atof(v[13]),atof(v[14]),atof(v[15])),V(0,1,0),F(atof(v[16])),
  F(atof(v[17])),F(atof(v[18])),F(atof(v[19])),F(w)/h);
 auto L=[&](Rng& rn,V&& uv){V L,T(1),wi=uv; I ty=T::E; Obj* o=&sc.E; Surf sp;
  for(I b=0;b<mb;b++){bool nee=!sc.Ls.empty()&&b>0&&ty&T::NonS;
   auto s=o->samp(rn,ty,sp,wi); if(!s){break;} auto[t,r,w,pcs]=*s; T=T/pcs;
   if(nee){auto[oL,pLs]=sc.sampL(rn); auto sL=oL.sampL(rn,sc.G,sp);
    if(sL){auto[wo,d,fL,pL]=*sL; if(!sc.isect({sp.p,wo},Eps,d*(1-Eps))){
     L=L+T*o->ev(t,sp,wi,wo)*fL/(o->pdf(t,sp,wi,wo)+pL*pLs);}}}
   T=T*w; auto hi=sc.isect(r); if(!hi){hi=H{{},sc.envL()}; if(!hi->o){break;}}
   auto[spH,oH]=*hi; if(oH->t&T::L){ L=L+T*oH->ev(oH->t&T::L,spH,{},-r.d)/
    (b==0||t&T::S?1:oH->pdfL(sp,spH,-r.d)*sc.pdfL()/o->pdf(t,sp,wi,r.d)+1);}
   if(b>3){F q=max(.2,1-T.m()); T=T/(1-q); if(rn.u()<q) break;}
   wi=-r.d; o=oH; sp=spH; ty=o->t&~T::L;} return L;};
 #pragma omp parallel for schedule(dynamic,1)
 for(I i=0;i<w*h;i++){thread_local Rng rn(42+omp_get_thread_num());
  for(I j=0;j<ns;j++) D[i]=D[i]+L(rn,V((i%w+rn.u())/w,(i/w+rn.u())/h,0))/ns;}
 FILE* f=fopen(v[4],"wb"); fprintf(f, "PF\n%d %d\n-1\n",w,h);
 vector<float> d(sz); for(I y=0;y<h;y++) for(I x=0;x<w;x++) for(I i=0;i<3;i++){
  d[3*(y*w+x)+i]=float(D[(h-1-y)*w+(w-1-x)][i]);}
 fwrite(d.data(),4,d.size(),f); fclose(f); return 0;}

Build

Windows

Tested with Visual Studio 2017 Community (15.6).

> "C:\Program Files (x86)\Microsoft Visual Studio\2017\Community\VC\Auxiliary\Build\vcvarsall.bat" x64
> cl /EHsc /std:c++latest /openmp minpt.cpp

Linux

Tested with GCC 8.1.

$ g++ -std=c++17 -fopenmp -O3 -w minpt.cpp -lstdc++fs -o minpt

Usage

All command line arguments are positional and required.

$ ./minpt \
    scene_path envmap_path lensfile_path output_path \
    spp max_path_length image_width image_height \
    camera_pos_x camera_pos_y camera_pos_z \
    camera_lookat_pos_x camera_lookat_pos_y camera_lookat_pos_z \
    vertical_fov focus_distance sensor_diagonal_length sensor_sensitivity
  • General arguments
    • scene_path: Input path to .obj file
    • envmap_path: Input path to .pmf file for environment map ("": black background)
    • lensfile_path: Input path to lens file ("": use pinhole camera)
    • output_path: Output path to rendered image
    • spp: Number of samples per pixel
    • max_path_length: Maximum path length (=number of bounces+1)
    • image_width image_height: Output image resolution
  • Camera related arguments
    • camera_pos_{x,y,z}: Camera position
    • camera_lookat_pos_{x,y,z}: Look-at position of the camera
    • Pinhole camera specific arguments
      • vertical_fov: Vertical field of view
    • Realistic camera specific arguments
      • focus_distance: Focus distance on the optical axis [m]
      • sensor_diagonal_length: Diagonal length of the sensor [mm]
      • sensor_sensitivity: Sensitivity multiplier of the sensor

Input/Output Description

Image file

Minpt only supports binary .ppm format (P6) as input textures, and .pfm format as environment maps. The rendered images are also generated with .pfm format. To check the rendered images, you want to use tools capable of viewing .pmf files, such as PCG HDRITools or HDRView.

Lens description file

Compatible with lens description file of pbrt-v3.

Examples

Example scenes can be obtained from Morgan McGuire's Computer Graphics Archive. Slight modification of .mtl files might be needed to obtain appropriate images.

Tips

Converting images

Deciding camera parameters

-->

Details

  • Ray-triangle intersection
    • Möller–Trumbore algorithm [Möller & Trumbore 1997]
  • Ray-AABB intersection
  • Orthonormal basis computation
    • Method by Duff et al. [2017]
    • Branchless version using copysign
  • Parallel BVH build
    • Simple producer-consumer design
    • Blocking queue
    • VS-only: Mixed horizontal/vertical work sharing [Wald 2007]
      • Utilizes parallel sort for shallow nodes
  • Environment light
    • Image-based importance sampling [Colbert et al. 2010]
  • Realistic camera [Kolb et al. 1995] [Steinert et al. 2011]
    • Importance sampling of exit pupils
    • Autofocus using binary search

References

  • [Möller & Trumbore 1997] Fast, Minimum Storage Ray-Triangle Intersection. JGT. 1997.
  • [Duff et al. 2017] Building An Orthonormal Basis, Revisited. JCGT. 2017.
  • [Colbert et al. 2010] Importance Sampling for Production Rendering. SIGGRAPH Course. 2010.
  • [Kolb et al. 1995] A Realistic Camera Model for Computer Graphics. SIGGRAPH. 1995.
  • [Steinert et al. 2011] General Spectral Camera Lens Simulation. CGF. 2011.
  • [Wald 2007] On fast Construction of SAH based Bounding Volume Hierarchies. Proc. Eurographics/IEEE Symposium on Interactive Ray Tracing. 2007.

Author

Hisanari Otsu (Personal site, Twitter)

License

This software is licensed under MIT license. See LICENSE file for detail.

Releases

No releases published

Packages

No packages published

Languages