forked from swiftlang/swift
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGenFunc.cpp
4091 lines (3515 loc) · 151 KB
/
GenFunc.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===--- GenFunc.cpp - Swift IR Generation for Function Types -------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements IR generation for function types in Swift. This
// includes creating the IR type as well as capturing variables and
// performing calls.
//
// Swift supports three representations of functions:
//
// - thin, which are just a function pointer;
//
// - thick, which are a pair of a function pointer and
// an optional ref-counted opaque context pointer; and
//
// - block, which match the Apple blocks extension: a ref-counted
// pointer to a mostly-opaque structure with the function pointer
// stored at a fixed offset.
//
// The order of function parameters is as follows:
//
// - indirect return pointer
// - block context parameter, if applicable
// - expanded formal parameter types
// - implicit generic parameters
// - thick context parameter, if applicable
// - error result out-parameter, if applicable
// - witness_method generic parameters, if applicable
//
// The context and error parameters are last because they are
// optional: we'd like to be able to turn a thin function into a
// thick function, or a non-throwing function into a throwing one,
// without adding a thunk. A thick context parameter is required
// (but can be passed undef) if an error result is required.
//
// The additional generic parameters for witness methods follow the
// same logic: we'd like to be able to use non-generic method
// implementations directly as protocol witnesses if the rest of the
// ABI matches up.
//
// Note that some of this business with context parameters and error
// results is just IR formalism; on most of our targets, both of
// these are passed in registers. This is also why passing them
// as the final argument isn't bad for performance.
//
// For now, function pointer types are always stored as opaque
// pointers in LLVM IR; using a well-typed function type is
// very challenging because of issues with recursive type expansion,
// which can potentially introduce infinite types. For example:
// struct A {
// var fn: (A) -> ()
// }
// Our CC lowering expands the fields of A into the argument list
// of A.fn, which is necessarily infinite. Attempting to use better
// types when not in a situation like this would just make the
// compiler complacent, leading to a long tail of undiscovered
// crashes. So instead we always store as i8* and require the
// bitcast whenever we change representations.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/ASTContext.h"
#include "swift/AST/ASTWalker.h"
#include "swift/AST/Attr.h"
#include "swift/AST/Builtins.h"
#include "swift/AST/Decl.h"
#include "swift/AST/IRGenOptions.h"
#include "swift/AST/Module.h"
#include "swift/AST/Pattern.h"
#include "swift/AST/PrettyStackTrace.h"
#include "swift/AST/Types.h"
#include "swift/Basic/Fallthrough.h"
#include "swift/SIL/SILModule.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclGroup.h"
#include "clang/AST/RecordLayout.h"
#include "clang/CodeGen/CodeGenABITypes.h"
#include "clang/CodeGen/ModuleBuilder.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/CallSite.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/StringSwitch.h"
#include "IndirectTypeInfo.h"
#include "CallingConvention.h"
#include "CallEmission.h"
#include "EnumPayload.h"
#include "Explosion.h"
#include "GenClass.h"
#include "GenHeap.h"
#include "GenMeta.h"
#include "GenObjC.h"
#include "GenPoly.h"
#include "GenProto.h"
#include "GenType.h"
#include "HeapTypeInfo.h"
#include "IRGenDebugInfo.h"
#include "IRGenFunction.h"
#include "IRGenModule.h"
#include "FixedTypeInfo.h"
#include "ScalarTypeInfo.h"
#include "GenFunc.h"
using namespace swift;
using namespace irgen;
bool ExplosionSchema::requiresIndirectResult(IRGenModule &IGM) const {
return containsAggregate() ||
size() > IGM.TargetInfo.MaxScalarsForDirectResult;
}
bool ExplosionSchema::requiresIndirectParameter(IRGenModule &IGM) const {
// For now, use the same condition as requiresIndirectSchema. We may want
// to diverge at some point.
return requiresIndirectResult(IGM);
}
llvm::Type *ExplosionSchema::getScalarResultType(IRGenModule &IGM) const {
if (size() == 0) {
return IGM.VoidTy;
} else if (size() == 1) {
return begin()->getScalarType();
} else {
SmallVector<llvm::Type*, 16> elts;
for (auto &elt : *this) elts.push_back(elt.getScalarType());
return llvm::StructType::get(IGM.getLLVMContext(), elts);
}
}
static void addDereferenceableAttributeToBuilder(IRGenModule &IGM,
llvm::AttrBuilder &b,
const TypeInfo &ti) {
// The addresses of empty values are undefined, so we can't safely mark them
// dereferenceable.
if (ti.isKnownEmpty())
return;
// If we know the type to have a fixed nonempty size, then the pointer is
// dereferenceable to at least that size.
// TODO: Would be nice to have a "getMinimumKnownSize" on TypeInfo for
// dynamic-layout aggregates.
if (auto fixedTI = dyn_cast<FixedTypeInfo>(&ti)) {
b.addAttribute(
llvm::Attribute::getWithDereferenceableBytes(IGM.LLVMContext,
fixedTI->getFixedSize().getValue()));
}
}
static void addIndirectValueParameterAttributes(IRGenModule &IGM,
llvm::AttributeSet &attrs,
const TypeInfo &ti,
unsigned argIndex) {
llvm::AttrBuilder b;
// Value parameter pointers can't alias or be captured.
b.addAttribute(llvm::Attribute::NoAlias);
b.addAttribute(llvm::Attribute::NoCapture);
// The parameter must reference dereferenceable memory of the type.
addDereferenceableAttributeToBuilder(IGM, b, ti);
auto resultAttrs = llvm::AttributeSet::get(IGM.LLVMContext, argIndex+1, b);
attrs = attrs.addAttributes(IGM.LLVMContext, argIndex+1, resultAttrs);
}
static void addInoutParameterAttributes(IRGenModule &IGM,
llvm::AttributeSet &attrs,
const TypeInfo &ti,
unsigned argIndex) {
llvm::AttrBuilder b;
// Aliasing inouts is unspecified, but we still want aliasing to be memory-
// safe, so we can't mark inouts as noalias at the LLVM level.
// They can't be captured without doing unsafe stuff, though.
b.addAttribute(llvm::Attribute::NoCapture);
// The inout must reference dereferenceable memory of the type.
addDereferenceableAttributeToBuilder(IGM, b, ti);
auto resultAttrs = llvm::AttributeSet::get(IGM.LLVMContext, argIndex+1, b);
attrs = attrs.addAttributes(IGM.LLVMContext, argIndex+1, resultAttrs);
}
void ExplosionSchema::addToArgTypes(IRGenModule &IGM,
const TypeInfo &TI,
llvm::AttributeSet &Attrs,
SmallVectorImpl<llvm::Type*> &types) const {
// Pass large arguments as indirect value parameters.
if (requiresIndirectParameter(IGM)) {
addIndirectValueParameterAttributes(IGM, Attrs, TI, types.size());
types.push_back(TI.getStorageType()->getPointerTo());
return;
}
for (auto &elt : *this) {
if (elt.isAggregate())
types.push_back(elt.getAggregateType()->getPointerTo());
else
types.push_back(elt.getScalarType());
}
}
static llvm::CallingConv::ID getFreestandingConvention(IRGenModule &IGM) {
// TODO: use a custom CC that returns three scalars efficiently
return llvm::CallingConv::C;
}
/// Expand the requirements of the given abstract calling convention
/// into a "physical" calling convention.
llvm::CallingConv::ID irgen::expandCallingConv(IRGenModule &IGM,
SILFunctionTypeRepresentation convention) {
switch (convention) {
case SILFunctionTypeRepresentation::CFunctionPointer:
case SILFunctionTypeRepresentation::ObjCMethod:
case SILFunctionTypeRepresentation::Block:
return llvm::CallingConv::C;
case SILFunctionTypeRepresentation::Method:
case SILFunctionTypeRepresentation::WitnessMethod:
// TODO: maybe add 'inreg' to the first non-result argument.
SWIFT_FALLTHROUGH;
case SILFunctionTypeRepresentation::Thin:
case SILFunctionTypeRepresentation::Thick:
return getFreestandingConvention(IGM);
}
llvm_unreachable("bad calling convention!");
}
namespace {
/// The natural form of the result of performing a call. A call
/// result may be indirect, in which case it is returned in memory
/// whose address is passed as an implicit first argument, or it may
/// be direct.
class CallResult {
union Value {
/// The buffer for the set of direct values produced by the call.
/// This can be greater than the normal cap on scalar values if
/// the actual call is inlined or builtin.
Explosion Direct;
/// The address into which to emit an indirect call. If this is
/// set, the call will be evaluated (as an initialization) into
/// this address; otherwise, memory will be allocated on the stack.
Address Indirect;
Value() {}
~Value() {}
};
enum class State {
Invalid, Indirect, Direct
};
Value CurValue;
State CurState;
public:
CallResult() : CurState(State::Invalid) {}
~CallResult() { reset(); }
/// Configure this result to carry a number of direct values at
/// the given explosion level.
Explosion &initForDirectValues() {
assert(CurState == State::Invalid);
CurState = State::Direct;
return *new (&CurValue.Direct) Explosion();
}
/// As a potential efficiency, set that this is a direct result
/// with no values.
void setAsEmptyDirect() {
initForDirectValues();
}
/// Set this result so that it carries a single directly-returned
/// maximally-fragile value without management.
void setAsSingleDirectUnmanagedFragileValue(llvm::Value *value) {
initForDirectValues().add(value);
}
void setAsIndirectAddress(Address address) {
assert(CurState == State::Invalid);
CurState = State::Indirect;
CurValue.Indirect = address;
}
bool isInvalid() const { return CurState == State::Invalid; }
bool isDirect() const { return CurState == State::Direct; }
bool isIndirect() const { return CurState == State::Indirect; }
Explosion &getDirectValues() {
assert(isDirect());
return CurValue.Direct;
}
Address getIndirectAddress() const {
assert(isIndirect());
return CurValue.Indirect;
}
void reset() {
if (CurState == State::Direct)
CurValue.Direct.~Explosion();
CurState = State::Invalid;
}
};
/// A signature represents something which can actually be called.
class Signature {
llvm::PointerIntPair<llvm::FunctionType*, 1, bool> TypeAndHasIndirectReturn;
llvm::AttributeSet Attributes;
public:
bool isValid() const {
return TypeAndHasIndirectReturn.getPointer() != nullptr;
}
void set(llvm::FunctionType *type, bool hasIndirectReturn,
llvm::AttributeSet attrs) {
TypeAndHasIndirectReturn.setPointer(type);
TypeAndHasIndirectReturn.setInt(hasIndirectReturn);
Attributes = attrs;
assert(isValid());
}
llvm::FunctionType *getType() const {
assert(isValid());
return TypeAndHasIndirectReturn.getPointer();
}
bool hasIndirectReturn() const {
assert(isValid());
return TypeAndHasIndirectReturn.getInt();
}
llvm::AttributeSet getAttributes() const {
return Attributes;
}
};
/// Information about the IR-level signature of a function type.
class FuncSignatureInfo {
private:
/// The SIL function type being represented.
const CanSILFunctionType FormalType;
mutable Signature TheSignature;
public:
FuncSignatureInfo(CanSILFunctionType formalType)
: FormalType(formalType) {}
Signature getSignature(IRGenModule &IGM) const;
};
/// The @thin function type-info class.
class ThinFuncTypeInfo : public PODSingleScalarTypeInfo<ThinFuncTypeInfo,
LoadableTypeInfo>,
public FuncSignatureInfo {
ThinFuncTypeInfo(CanSILFunctionType formalType, llvm::Type *storageType,
Size size, Alignment align,
const SpareBitVector &spareBits)
: PODSingleScalarTypeInfo(storageType, size, spareBits, align),
FuncSignatureInfo(formalType)
{
}
public:
static const ThinFuncTypeInfo *create(CanSILFunctionType formalType,
llvm::Type *storageType,
Size size, Alignment align,
const SpareBitVector &spareBits) {
return new ThinFuncTypeInfo(formalType, storageType, size, align,
spareBits);
}
bool mayHaveExtraInhabitants(IRGenModule &IGM) const override {
return true;
}
unsigned getFixedExtraInhabitantCount(IRGenModule &IGM) const override {
return getFunctionPointerExtraInhabitantCount(IGM);
}
APInt getFixedExtraInhabitantValue(IRGenModule &IGM,
unsigned bits,
unsigned index) const override {
return getFunctionPointerFixedExtraInhabitantValue(IGM, bits, index, 0);
}
llvm::Value *getExtraInhabitantIndex(IRGenFunction &IGF, Address src,
SILType T)
const override {
return getFunctionPointerExtraInhabitantIndex(IGF, src);
}
void storeExtraInhabitant(IRGenFunction &IGF, llvm::Value *index,
Address dest, SILType T) const override {
return storeFunctionPointerExtraInhabitant(IGF, index, dest);
}
};
/// The @thick function type-info class.
class FuncTypeInfo : public ScalarTypeInfo<FuncTypeInfo, ReferenceTypeInfo>,
public FuncSignatureInfo {
FuncTypeInfo(CanSILFunctionType formalType, llvm::StructType *storageType,
Size size, Alignment align, SpareBitVector &&spareBits)
: ScalarTypeInfo(storageType, size, std::move(spareBits), align),
FuncSignatureInfo(formalType)
{
}
public:
static const FuncTypeInfo *create(CanSILFunctionType formalType,
llvm::StructType *storageType,
Size size, Alignment align,
SpareBitVector &&spareBits) {
return new FuncTypeInfo(formalType, storageType, size, align,
std::move(spareBits));
}
// Function types do not satisfy allowsOwnership.
const WeakTypeInfo *
createWeakStorageType(TypeConverter &TC) const override {
llvm_unreachable("[weak] function type");
}
const UnownedTypeInfo *
createUnownedStorageType(TypeConverter &TC) const override {
llvm_unreachable("[unowned] function type");
}
const TypeInfo *
createUnmanagedStorageType(TypeConverter &TC) const override {
llvm_unreachable("@unowned(unsafe) function type");
}
llvm::StructType *getStorageType() const {
return cast<llvm::StructType>(TypeInfo::getStorageType());
}
unsigned getExplosionSize() const override {
return 2;
}
void getSchema(ExplosionSchema &schema) const override {
llvm::StructType *structTy = cast<llvm::StructType>(getStorageType());
schema.add(ExplosionSchema::Element::forScalar(structTy->getElementType(0)));
schema.add(ExplosionSchema::Element::forScalar(structTy->getElementType(1)));
}
Address projectFunction(IRGenFunction &IGF, Address address) const {
return IGF.Builder.CreateStructGEP(address, 0, Size(0),
address->getName() + ".fn");
}
Address projectData(IRGenFunction &IGF, Address address) const {
return IGF.Builder.CreateStructGEP(address, 1, IGF.IGM.getPointerSize(),
address->getName() + ".data");
}
void loadAsCopy(IRGenFunction &IGF, Address address,
Explosion &e) const override {
// Load the function.
Address fnAddr = projectFunction(IGF, address);
e.add(IGF.Builder.CreateLoad(fnAddr, fnAddr->getName()+".load"));
Address dataAddr = projectData(IGF, address);
IGF.emitLoadAndRetain(dataAddr, e);
}
void loadAsTake(IRGenFunction &IGF, Address addr,
Explosion &e) const override {
// Load the function.
Address fnAddr = projectFunction(IGF, addr);
e.add(IGF.Builder.CreateLoad(fnAddr));
Address dataAddr = projectData(IGF, addr);
e.add(IGF.Builder.CreateLoad(dataAddr));
}
void assign(IRGenFunction &IGF, Explosion &e,
Address address) const override {
// Store the function pointer.
Address fnAddr = projectFunction(IGF, address);
IGF.Builder.CreateStore(e.claimNext(), fnAddr);
Address dataAddr = projectData(IGF, address);
IGF.emitAssignRetained(e.claimNext(), dataAddr);
}
void initialize(IRGenFunction &IGF, Explosion &e,
Address address) const override {
// Store the function pointer.
Address fnAddr = projectFunction(IGF, address);
IGF.Builder.CreateStore(e.claimNext(), fnAddr);
// Store the data pointer, if any, transferring the +1.
Address dataAddr = projectData(IGF, address);
IGF.emitInitializeRetained(e.claimNext(), dataAddr);
}
void copy(IRGenFunction &IGF, Explosion &src,
Explosion &dest) const override {
src.transferInto(dest, 1);
IGF.emitRetain(src.claimNext(), dest);
}
void consume(IRGenFunction &IGF, Explosion &src) const override {
src.claimNext();
IGF.emitRelease(src.claimNext());
}
void fixLifetime(IRGenFunction &IGF, Explosion &src) const override {
src.claimNext();
IGF.emitFixLifetime(src.claimNext());
}
void retain(IRGenFunction &IGF, Explosion &e) const override {
e.claimNext();
IGF.emitRetainCall(e.claimNext());
}
void release(IRGenFunction &IGF, Explosion &e) const override {
e.claimNext();
IGF.emitRelease(e.claimNext());
}
void retainUnowned(IRGenFunction &IGF, Explosion &e) const override {
e.claimNext();
IGF.emitRetainUnowned(e.claimNext());
}
void unownedRetain(IRGenFunction &IGF, Explosion &e) const override {
e.claimNext();
IGF.emitUnownedRetain(e.claimNext());
}
void unownedRelease(IRGenFunction &IGF, Explosion &e) const override {
e.claimNext();
IGF.emitUnownedRelease(e.claimNext());
}
void destroy(IRGenFunction &IGF, Address addr, SILType T) const override {
IGF.emitRelease(IGF.Builder.CreateLoad(projectData(IGF, addr)));
}
void packIntoEnumPayload(IRGenFunction &IGF,
EnumPayload &payload,
Explosion &src,
unsigned offset) const override {
payload.insertValue(IGF, src.claimNext(), offset);
payload.insertValue(IGF, src.claimNext(),
offset + IGF.IGM.getPointerSize().getValueInBits());
}
void unpackFromEnumPayload(IRGenFunction &IGF,
const EnumPayload &payload,
Explosion &dest,
unsigned offset) const override {
auto storageTy = getStorageType();
dest.add(payload.extractValue(IGF, storageTy->getElementType(0), offset));
dest.add(payload.extractValue(IGF, storageTy->getElementType(1),
offset + IGF.IGM.getPointerSize().getValueInBits()));
}
bool mayHaveExtraInhabitants(IRGenModule &IGM) const override {
return true;
}
unsigned getFixedExtraInhabitantCount(IRGenModule &IGM) const override {
return getFunctionPointerExtraInhabitantCount(IGM);
}
APInt getFixedExtraInhabitantValue(IRGenModule &IGM,
unsigned bits,
unsigned index) const override {
return getFunctionPointerFixedExtraInhabitantValue(IGM, bits, index, 0);
}
llvm::Value *getExtraInhabitantIndex(IRGenFunction &IGF, Address src,
SILType T) const override {
src = projectFunction(IGF, src);
return getFunctionPointerExtraInhabitantIndex(IGF, src);
}
APInt getFixedExtraInhabitantMask(IRGenModule &IGM) const override {
// Only the function pointer value is used for extra inhabitants.
auto pointerSize = IGM.getPointerSize().getValueInBits();
APInt bits = APInt::getAllOnesValue(pointerSize);
bits = bits.zext(pointerSize * 2);
return bits;
}
void storeExtraInhabitant(IRGenFunction &IGF, llvm::Value *index,
Address dest, SILType T) const override {
dest = projectFunction(IGF, dest);
return storeFunctionPointerExtraInhabitant(IGF, index, dest);
}
};
/// The type-info class for ObjC blocks, which are represented by an ObjC
/// heap pointer.
class BlockTypeInfo : public HeapTypeInfo<BlockTypeInfo>,
public FuncSignatureInfo
{
public:
BlockTypeInfo(CanSILFunctionType ty,
llvm::PointerType *storageType,
Size size, SpareBitVector spareBits, Alignment align)
: HeapTypeInfo(storageType, size, spareBits, align),
FuncSignatureInfo(ty)
{
}
ReferenceCounting getReferenceCounting() const {
return ReferenceCounting::Block;
}
};
/// The type info class for the on-stack representation of an ObjC block.
///
/// TODO: May not be fixed-layout if we capture generics.
class BlockStorageTypeInfo final
: public IndirectTypeInfo<BlockStorageTypeInfo, FixedTypeInfo>
{
Size CaptureOffset;
public:
BlockStorageTypeInfo(llvm::Type *type, Size size, Alignment align,
SpareBitVector &&spareBits,
IsPOD_t pod, IsBitwiseTakable_t bt, Size captureOffset)
: IndirectTypeInfo(type, size, std::move(spareBits), align, pod, bt,
IsFixedSize),
CaptureOffset(captureOffset)
{}
// The lowered type should be an LLVM struct comprising the block header
// (IGM.ObjCBlockStructTy) as its first element and the capture as its
// second.
Address projectBlockHeader(IRGenFunction &IGF, Address storage) const {
return IGF.Builder.CreateStructGEP(storage, 0, Size(0));
}
Address projectCapture(IRGenFunction &IGF, Address storage) const {
return IGF.Builder.CreateStructGEP(storage, 1, CaptureOffset);
}
// TODO
// The frontend will currently never emit copy_addr or destroy_addr for
// block storage.
void assignWithCopy(IRGenFunction &IGF, Address dest,
Address src, SILType T) const override {
IGF.unimplemented(SourceLoc(), "copying @block_storage");
}
void initializeWithCopy(IRGenFunction &IGF, Address dest,
Address src, SILType T) const override {
IGF.unimplemented(SourceLoc(), "copying @block_storage");
}
void destroy(IRGenFunction &IGF, Address addr, SILType T) const override {
IGF.unimplemented(SourceLoc(), "destroying @block_storage");
}
};
}
const TypeInfo *TypeConverter::convertBlockStorageType(SILBlockStorageType *T) {
// The block storage consists of the block header (ObjCBlockStructTy)
// followed by the lowered type of the capture.
auto &capture = IGM.getTypeInfoForLowered(T->getCaptureType());
// TODO: Support dynamic-sized captures.
const FixedTypeInfo *fixedCapture = dyn_cast<FixedTypeInfo>(&capture);
llvm::Type *fixedCaptureTy;
// The block header is pointer aligned. The capture may be worse aligned.
Alignment align = IGM.getPointerAlignment();
Size captureOffset(
IGM.DataLayout.getStructLayout(IGM.ObjCBlockStructTy)->getSizeInBytes());
Size size = captureOffset;
SpareBitVector spareBits =
SpareBitVector::getConstant(size.getValueInBits(), false);
IsPOD_t pod = IsNotPOD;
IsBitwiseTakable_t bt = IsNotBitwiseTakable;
if (!fixedCapture) {
IGM.unimplemented(SourceLoc(), "dynamic @block_storage capture");
fixedCaptureTy = llvm::StructType::get(IGM.getLLVMContext(), {});
} else {
fixedCaptureTy = cast<FixedTypeInfo>(capture).getStorageType();
align = std::max(align, fixedCapture->getFixedAlignment());
captureOffset = captureOffset.roundUpToAlignment(align);
spareBits.extendWithSetBits(captureOffset.getValueInBits());
size = captureOffset + fixedCapture->getFixedSize();
spareBits.append(fixedCapture->getSpareBits());
pod = fixedCapture->isPOD(ResilienceScope::Component);
bt = fixedCapture->isBitwiseTakable(ResilienceScope::Component);
}
llvm::Type *storageElts[] = {
IGM.ObjCBlockStructTy,
fixedCaptureTy,
};
auto storageTy = llvm::StructType::get(IGM.getLLVMContext(), storageElts,
/*packed*/ false);
return new BlockStorageTypeInfo(storageTy, size, align, std::move(spareBits),
pod, bt, captureOffset);
}
Address irgen::projectBlockStorageCapture(IRGenFunction &IGF,
Address storageAddr,
CanSILBlockStorageType storageTy) {
auto &tl = IGF.getTypeInfoForLowered(storageTy).as<BlockStorageTypeInfo>();
return tl.projectCapture(IGF, storageAddr);
}
const TypeInfo *TypeConverter::convertFunctionType(SILFunctionType *T) {
switch (T->getRepresentation()) {
case SILFunctionType::Representation::Block:
return new BlockTypeInfo(CanSILFunctionType(T),
IGM.ObjCBlockPtrTy,
IGM.getPointerSize(),
IGM.getHeapObjectSpareBits(),
IGM.getPointerAlignment());
case SILFunctionType::Representation::Thin:
case SILFunctionType::Representation::Method:
case SILFunctionType::Representation::WitnessMethod:
case SILFunctionType::Representation::ObjCMethod:
case SILFunctionType::Representation::CFunctionPointer:
return ThinFuncTypeInfo::create(CanSILFunctionType(T),
IGM.FunctionPtrTy,
IGM.getPointerSize(),
IGM.getPointerAlignment(),
IGM.getFunctionPointerSpareBits());
case SILFunctionType::Representation::Thick: {
SpareBitVector spareBits;
spareBits.append(IGM.getFunctionPointerSpareBits());
spareBits.append(IGM.getHeapObjectSpareBits());
return FuncTypeInfo::create(CanSILFunctionType(T),
IGM.FunctionPairTy,
IGM.getPointerSize() * 2,
IGM.getPointerAlignment(),
std::move(spareBits));
}
}
llvm_unreachable("bad function type representation");
}
void irgen::addIndirectReturnAttributes(IRGenModule &IGM,
llvm::AttributeSet &attrs) {
static const llvm::Attribute::AttrKind attrKinds[] = {
llvm::Attribute::StructRet,
llvm::Attribute::NoAlias,
llvm::Attribute::NoCapture,
};
auto resultAttrs = llvm::AttributeSet::get(IGM.LLVMContext, 1, attrKinds);
attrs = attrs.addAttributes(IGM.LLVMContext, 1, resultAttrs);
}
void irgen::addByvalArgumentAttributes(IRGenModule &IGM,
llvm::AttributeSet &attrs,
unsigned argIndex,
Alignment align) {
llvm::AttrBuilder b;
b.addAttribute(llvm::Attribute::ByVal);
b.addAttribute(llvm::Attribute::getWithAlignment(IGM.LLVMContext,
align.getValue()));
auto resultAttrs = llvm::AttributeSet::get(IGM.LLVMContext, argIndex+1, b);
attrs = attrs.addAttributes(IGM.LLVMContext,
argIndex+1,
resultAttrs);
}
void irgen::addExtendAttribute(IRGenModule &IGM,
llvm::AttributeSet &attrs,
unsigned index, bool signExtend) {
llvm::AttrBuilder b;
if (signExtend)
b.addAttribute(llvm::Attribute::SExt);
else
b.addAttribute(llvm::Attribute::ZExt);
auto resultAttrs = llvm::AttributeSet::get(IGM.LLVMContext, index, b);
attrs = attrs.addAttributes(IGM.LLVMContext, index, resultAttrs);
}
namespace {
class SignatureExpansion {
IRGenModule &IGM;
CanSILFunctionType FnType;
public:
SmallVector<llvm::Type*, 8> ParamIRTypes;
llvm::AttributeSet Attrs;
bool HasIndirectResult = false;
SignatureExpansion(IRGenModule &IGM, CanSILFunctionType fnType)
: IGM(IGM), FnType(fnType) {}
llvm::Type *expandSignatureTypes();
private:
void expand(SILParameterInfo param);
llvm::Type *addIndirectResult();
unsigned getCurParamIndex() {
return ParamIRTypes.size();
}
/// Add a pointer to the given type as the next parameter.
void addPointerParameter(llvm::Type *storageType) {
ParamIRTypes.push_back(storageType->getPointerTo());
}
llvm::Type *expandResult();
void expandParameters();
llvm::Type *expandExternalSignatureTypes();
};
}
llvm::Type *SignatureExpansion::addIndirectResult() {
auto resultType = FnType->getResult().getSILType();
const TypeInfo &resultTI = IGM.getTypeInfo(resultType);
addPointerParameter(resultTI.getStorageType());
addIndirectReturnAttributes(IGM, Attrs);
return IGM.VoidTy;
}
llvm::Type *SignatureExpansion::expandResult() {
// Handle the direct result type, checking for supposedly scalar
// result types that we actually want to return indirectly.
auto resultType = FnType->getResult().getSILType();
// Fast-path the empty tuple type.
if (auto tuple = resultType.getAs<TupleType>())
if (tuple->getNumElements() == 0)
return IGM.VoidTy;
ExplosionSchema schema = IGM.getSchema(resultType);
switch (FnType->getLanguage()) {
case SILFunctionLanguage::C:
llvm_unreachable("Expanding C/ObjC parameters in the wrong place!");
break;
case SILFunctionLanguage::Swift: {
if (schema.requiresIndirectResult(IGM))
return addIndirectResult();
return schema.getScalarResultType(IGM);
}
}
}
static const clang::FieldDecl *
getLargestUnionField(const clang::RecordDecl *record,
const clang::ASTContext &ctx) {
const clang::FieldDecl *largestField = nullptr;
clang::CharUnits unionSize = clang::CharUnits::Zero();
for (auto field : record->fields()) {
assert(!field->isBitField());
clang::CharUnits fieldSize = ctx.getTypeSizeInChars(field->getType());
if (unionSize < fieldSize) {
unionSize = fieldSize;
largestField = field;
}
}
assert(largestField && "empty union?");
return largestField;
}
namespace {
/// A CRTP class for working with Clang's ABIArgInfo::Expand
/// argument type expansions.
template <class Impl, class... Args> struct ClangExpand {
IRGenModule &IGM;
const clang::ASTContext &Ctx;
ClangExpand(IRGenModule &IGM) : IGM(IGM), Ctx(IGM.getClangASTContext()) {}
Impl &asImpl() { return *static_cast<Impl*>(this); }
void visit(clang::CanQualType type, Args... args) {
switch (type->getTypeClass()) {
#define TYPE(Class, Base)
#define NON_CANONICAL_TYPE(Class, Base) \
case clang::Type::Class:
#define DEPENDENT_TYPE(Class, Base) \
case clang::Type::Class:
#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) \
case clang::Type::Class:
#include "clang/AST/TypeNodes.def"
llvm_unreachable("canonical or dependent type in ABI lowering");
// These shouldn't occur in expandable struct types.
case clang::Type::IncompleteArray:
case clang::Type::VariableArray:
llvm_unreachable("variable-sized or incomplete array in ABI lowering");
// We should only ever get ObjC pointers, not underlying objects.
case clang::Type::ObjCInterface:
case clang::Type::ObjCObject:
llvm_unreachable("ObjC object type in ABI lowering");
// We should only ever get function pointers.
case clang::Type::FunctionProto:
case clang::Type::FunctionNoProto:
llvm_unreachable("non-pointer function type in ABI lowering");
// We currently never import C++ code, and we should be able to
// kill Expand before we do.
case clang::Type::LValueReference:
case clang::Type::RValueReference:
case clang::Type::MemberPointer:
case clang::Type::Auto:
llvm_unreachable("C++ type in ABI lowering?");
case clang::Type::ConstantArray: {
auto array = Ctx.getAsConstantArrayType(type);
auto elt = Ctx.getCanonicalType(array->getElementType());
auto &&context = asImpl().beginArrayElements(elt);
uint64_t n = array->getSize().getZExtValue();
for (uint64_t i = 0; i != n; ++i) {
asImpl().visitArrayElement(elt, i, context, args...);
}
return;
}
case clang::Type::Record: {
auto record = cast<clang::RecordType>(type)->getDecl();
if (record->isUnion()) {
auto largest = getLargestUnionField(record, Ctx);
asImpl().visitUnionField(record, largest, args...);
} else {
auto &&context = asImpl().beginStructFields(record);
for (auto field : record->fields()) {
asImpl().visitStructField(record, field, context, args...);
}
}
return;
}
case clang::Type::Complex: {
auto elt = type.castAs<clang::ComplexType>().getElementType();
asImpl().visitComplexElement(elt, 0, args...);
asImpl().visitComplexElement(elt, 1, args...);
return;
}
// Just handle this types as opaque integers.
case clang::Type::Enum:
case clang::Type::Atomic:
asImpl().visitScalar(convertTypeAsInteger(type), args...);
return;
case clang::Type::Builtin:
asImpl().visitScalar(
convertBuiltinType(type.castAs<clang::BuiltinType>()),
args...);
return;
case clang::Type::Vector:
case clang::Type::ExtVector:
asImpl().visitScalar(
convertVectorType(type.castAs<clang::VectorType>()),
args...);
return;
case clang::Type::Pointer:
case clang::Type::BlockPointer:
case clang::Type::ObjCObjectPointer:
asImpl().visitScalar(IGM.Int8PtrTy, args...);
return;
}
llvm_unreachable("bad type kind");
}
Size getSizeOfType(clang::QualType type) {
auto clangSize = Ctx.getTypeSizeInChars(type);
return Size(clangSize.getQuantity());
}
private:
llvm::Type *convertVectorType(clang::CanQual<clang::VectorType> type) {
auto eltTy =
convertBuiltinType(type->getElementType().castAs<clang::BuiltinType>());
return llvm::VectorType::get(eltTy, type->getNumElements());
}
llvm::Type *convertBuiltinType(clang::CanQual<clang::BuiltinType> type) {
switch (type.getTypePtr()->getKind()) {
#define BUILTIN_TYPE(Id, SingletonId)
#define PLACEHOLDER_TYPE(Id, SingletonId) \
case clang::BuiltinType::Id:
#include "clang/AST/BuiltinTypes.def"
case clang::BuiltinType::Dependent:
llvm_unreachable("placeholder type in ABI lowering");