-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathinference.py
175 lines (136 loc) · 5.58 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import os, sys
import traceback
import cv2
import argparse
import pandas as pd
import numpy as np
from PIL import Image
import tensorflow as tf
import logger as Logger
logger = Logger.get_logger('hyper_fcn', './logs/inference')
def create_output_csv(image_paths, predictions, classes):
output = {
"file_name":[],
"prediction":[],
"score":[]
}
for i, preds in enumerate(predictions):
output["file_name"].append(image_paths[i])
output["prediction"].append(classes[np.argmax(preds)])
output["score"].append(np.max(preds))
return output
def construct_image_batch(image_group, BATCH_SIZE):
"""
Pads the batch input with zeros for model prediction.
Args
image_group: np.array of shape (None, None, None, 3) or (None, 3, None, None)
BATCH_SIZE: Batch size required to be fed into the model
Returns
Zero padded image_group with batches of size BATCH_SIZE
"""
# Get the max image shape.
max_shape = tuple(max(image.shape[x] for image in image_group) for x in range(3))
# Construct an image batch object.
image_batch = np.zeros((BATCH_SIZE,) + max_shape, dtype=tf.keras.backend.floatx())
# Copy all images to the upper left part of the image batch object.
for image_index, image in enumerate(image_group):
image_batch[image_index, :image.shape[0], :image.shape[1], :image.shape[2]] = image
if tf.keras.backend.image_data_format() == 'channels_first':
image_batch = image_batch.transpose((0, 3, 1, 2))
return image_batch
def resize_image(img, min_side_len=24):
h, w, c = img.shape
# limit the min side maintaining the aspect ratio
if min(h, w) < min_side_len:
im_scale = float(min_side_len) / h if h < w else float(min_side_len) / w
else:
im_scale = 1.
new_h = int(h * im_scale)
new_w = int(w * im_scale)
re_im = cv2.resize(img, (new_w, new_h), interpolation=cv2.INTER_AREA)
return re_im, new_h / h, new_w / w
def preprocess_image(x):
""" Preprocess an image by scaling pixels between -1 and 1, sample-wise.
Args
x: np.array of shape (None, None, 3) or (3, None, None)
Returns
The input with the pixels between -1 and 1.
"""
# Covert always to float32 to keep compatibility with opencv.
x = x.astype(np.float32)
x /= 127.5
x -= 1.
x, rh, rw = resize_image(x)
return x
def create_model_input(folder_path):
"""
Creates numpy array of images in a given folder path
Args
folder_path: Path to folder where images are kept
Returns
A list of 3D numpy arrays where each list item is an image
"""
image_paths = []
images = []
file_names = os.listdir(folder_path)
for image_name in file_names:
# Reading image the same way it is done while training
img = np.asarray(Image.open(os.path.join(folder_path, image_name)).convert('RGB'))[:, :, ::-1]
images.append(img)
image_paths.append(image_name)
return images, image_paths
def predict(folder_path, snapshot_dir):
"""
Helper function to perform inference on the trained model.
This function takes a folder with images as input. It then loads the images
and pre-processes the images similar to training. After successful pre-processing,
the pre-trained model is loaded and inference is performed.
The output is returned as a dataframe.
Args
folder_path: Path to folder where images are kept
snapshot_dir: Path the snapshots folder where train_model.h5
and classes.txt are present
Returns
A dataframe with image name, model prediction and confidence score columns
"""
logger.info('Reading input images')
# Reading images from the input folder path
images, image_paths = create_model_input(folder_path)
logger.info('Processing input images')
# Using the preprocessing function from the training generator
images = list(map(preprocess_image, images))
logger.info('Constructing image batches')
# Constructing image batches similar to training generator
images = construct_image_batch(images, len(images))
logger.info('Loading model')
# Loading pre-trained keras model
model = tf.keras.models.load_model(os.path.join(snapshot_dir, 'train_model.h5'))
logger.info('Getting model predictions')
# Predicting on images batch
predictions = model.predict(images)
logger.info('Processing model output')
# Reading class names
with open(os.path.join(snapshot_dir, 'classes.txt')) as f:
classes = f.read().splitlines()
# Creating output dataframe
output = create_output_csv(image_paths, predictions, classes)
output = pd.DataFrame(output)
return output
def parse_args(args):
"""
Example command:
$ python inference.py --test-dir ./test_images --snapshot-dir ./snapshots
"""
parser = argparse.ArgumentParser(description='Optimize RetinaNet anchor configuration')
parser.add_argument('--test-dir', type=str, help='Directory containing images for testing.', default="./test_images")
parser.add_argument('--snapshot-dir', type=str, help='Directory containing training artifacts.', default="./snapshots")
return parser.parse_args(args)
def main(args=None):
# Parse command line arguments.
if args is None:
args = sys.argv[1:]
args = parse_args(args)
predictions = predict(args.test_dir, args.snapshot_dir)
print(predictions)
if __name__=="__main__":
main()