Skip to content

Latest commit

 

History

History
526 lines (437 loc) · 20 KB

tutorial-copy-data-dot-net.md

File metadata and controls

526 lines (437 loc) · 20 KB
title description services documentationcenter author manager ms.reviewer ms.service ms.workload ms.tgt_pltfrm ms.devlang ms.topic ms.date ms.author
Copy data from Azure Blob Storage to SQL Database | Microsoft Docs
This tutorial provides step-by-step instructions for copying data from Azure Blob Storage to Azure SQL Database.
data-factory
linda33wj
craigg
douglasl
data-factory
data-services
na
na
tutorial
01/22/2018
jingwang

Copy data from Azure Blob to Azure SQL Database using Azure Data Factory

In this tutorial, you create a Data Factory pipeline that copies data from Azure Blob Storage to Azure SQL Database. The configuration pattern in this tutorial applies to copying from a file-based data store to a relational data store. For a list of data stores supported as sources and sinks, see supported data stores table.

You perform the following steps in this tutorial:

[!div class="checklist"]

  • Create a data factory.
  • Create Azure Storage and Azure SQL Database linked services.
  • Create Azure BLob and Azure SQL Database datasets.
  • Create a pipeline contains a Copy activity.
  • Start a pipeline run.
  • Monitor the pipeline and activity runs.

This tutorial uses .NET SDK. You can use other mechanisms to interact with Azure Data Factory, refer to samples under "Quickstarts".

If you don't have an Azure subscription, create a free account before you begin.

Prerequisites

  • Azure Storage account. You use the blob storage as source data store. If you don't have an Azure storage account, see the Create a storage account article for steps to create one.
  • Azure SQL Database. You use the database as sink data store. If you don't have an Azure SQL Database, see the Create an Azure SQL database article for steps to create one.
  • Visual Studio 2015, or 2017. The walkthrough in this article uses Visual Studio 2017.
  • Download and install Azure .NET SDK.
  • Create an application in Azure Active Directory following this instruction. Make note of the following values that you use in later steps: application ID, authentication key, and tenant ID. Assign application to "Contributor" role by following instructions in the same article.

Create a blob and a SQL table

Now, prepare your Azure Blob and Azure SQL Database for the tutorial by performing the following steps:

Create a source blob

  1. Launch Notepad. Copy the following text and save it as inputEmp.txt file on your disk.

    John|Doe
    Jane|Doe
    
  2. Use tools such as Azure Storage Explorer to create the adfv2tutorial container, and to upload the inputEmp.txt file to the container.

Create a sink SQL table

  1. Use the following SQL script to create the dbo.emp table in your Azure SQL Database.

    CREATE TABLE dbo.emp
    (
        ID int IDENTITY(1,1) NOT NULL,
        FirstName varchar(50),
        LastName varchar(50)
    )
    GO
    
    CREATE CLUSTERED INDEX IX_emp_ID ON dbo.emp (ID);
  2. Allow Azure services to access SQL server. Ensure that Allow access to Azure services setting is turned ON for your Azure SQL server so that the Data Factory service can write data to your Azure SQL server. To verify and turn on this setting, do the following steps:

    1. Click More services hub on the left and click SQL servers.
    2. Select your server, and click Firewall under SETTINGS.
    3. In the Firewall settings page, click ON for Allow access to Azure services.

Create a Visual Studio project

Using Visual Studio 2015/2017, create a C# .NET console application.

  1. Launch Visual Studio.
  2. Click File, point to New, and click Project.
  3. Select Visual C# -> Console App (.NET Framework) from the list of project types on the right. .NET version 4.5.2 or above is required.
  4. Enter ADFv2Tutorial for the Name.
  5. Click OK to create the project.

Install NuGet packages

  1. Click Tools -> NuGet Package Manager -> Package Manager Console.

  2. In the Package Manager Console, run the following commands to install packages:

    Install-Package Microsoft.Azure.Management.DataFactory -Prerelease
    Install-Package Microsoft.Azure.Management.ResourceManager -Prerelease
    Install-Package Microsoft.IdentityModel.Clients.ActiveDirectory
    

Create a data factory client

  1. Open Program.cs, include the following statements to add references to namespaces.

    using System;
    using System.Collections.Generic;
    using System.Linq;
    using Microsoft.Rest;
    using Microsoft.Azure.Management.ResourceManager;
    using Microsoft.Azure.Management.DataFactory;
    using Microsoft.Azure.Management.DataFactory.Models;
    using Microsoft.IdentityModel.Clients.ActiveDirectory;
  2. Add the following code to the Main method that sets variables. Replace place-holders with your own values. For a list of Azure regions in which Data Factory is currently available, select the regions that interest you on the following page, and then expand Analytics to locate Data Factory: Products available by region. The data stores (Azure Storage, Azure SQL Database, etc.) and computes (HDInsight, etc.) used by data factory can be in other regions.

    // Set variables
    string tenantID = "<your tenant ID>";
    string applicationId = "<your application ID>";
    string authenticationKey = "<your authentication key for the application>";
    string subscriptionId = "<your subscription ID to create the factory>";
    string resourceGroup = "<your resource group to create the factory>";
    
    string region = "East US";
    string dataFactoryName = "<specify the name of a data factory to create. It must be globally unique.>";
    
    // Specify the source Azure Blob information
    string storageAccount = "<your storage account name to copy data>";
    string storageKey = "<your storage account key>";
    string inputBlobPath = "adfv2tutorial/";
    string inputBlobName = "inputEmp.txt";
    
    // Specify the sink Azure SQL Database information
    string azureSqlConnString = "Server=tcp:<your server name>.database.windows.net,1433;Database=<your database name>;User ID=<your username>@<your server name>;Password=<your password>;Trusted_Connection=False;Encrypt=True;Connection Timeout=30";
    string azureSqlTableName = "dbo.emp";
    
    string storageLinkedServiceName = "AzureStorageLinkedService";
    string sqlDbLinkedServiceName = "AzureSqlDbLinkedService";
    string blobDatasetName = "BlobDataset";
    string sqlDatasetName = "SqlDataset";
    string pipelineName = "Adfv2TutorialBlobToSqlCopy";
  3. Add the following code to the Main method that creates an instance of DataFactoryManagementClient class. You use this object to create a data factory, linked service, datasets, and pipeline. You also use this object to monitor the pipeline run details.

    // Authenticate and create a data factory management client
    var context = new AuthenticationContext("https://login.windows.net/" + tenantID);
    ClientCredential cc = new ClientCredential(applicationId, authenticationKey);
    AuthenticationResult result = context.AcquireTokenAsync("https://management.azure.com/", cc).Result;
    ServiceClientCredentials cred = new TokenCredentials(result.AccessToken);
    var client = new DataFactoryManagementClient(cred) { SubscriptionId = subscriptionId };

Create a data factory

Add the following code to the Main method that creates a data factory.

// Create a data factory
Console.WriteLine("Creating a data factory " + dataFactoryName + "...");
Factory dataFactory = new Factory
{
    Location = region,
    Identity = new FactoryIdentity()

};
client.Factories.CreateOrUpdate(resourceGroup, dataFactoryName, dataFactory);
Console.WriteLine(SafeJsonConvert.SerializeObject(dataFactory, client.SerializationSettings));

while (client.Factories.Get(resourceGroup, dataFactoryName).ProvisioningState == "PendingCreation")
{
    System.Threading.Thread.Sleep(1000);
}

Create linked services

In this tutorial, you create two linked services for source and sink respectively:

Create an Azure Storage linked service

Add the following code to the Main method that creates an Azure Storage linked service. Learn more from Azure Blob linked service properties on supported properties and details.

// Create an Azure Storage linked service
Console.WriteLine("Creating linked service " + storageLinkedServiceName + "...");

LinkedServiceResource storageLinkedService = new LinkedServiceResource(
    new AzureStorageLinkedService
    {
        ConnectionString = new SecureString("DefaultEndpointsProtocol=https;AccountName=" + storageAccount + ";AccountKey=" + storageKey)
    }
);
client.LinkedServices.CreateOrUpdate(resourceGroup, dataFactoryName, storageLinkedServiceName, storageLinkedService);
Console.WriteLine(SafeJsonConvert.SerializeObject(storageLinkedService, client.SerializationSettings));

Create an Azure SQL Database linked service

Add the following code to the Main method that creates an Azure SQL Database linked service. Learn more from Azure SQL Database linked service properties on supported properties and details.

// Create an Azure SQL Database linked service
Console.WriteLine("Creating linked service " + sqlDbLinkedServiceName + "...");

LinkedServiceResource sqlDbLinkedService = new LinkedServiceResource(
    new AzureSqlDatabaseLinkedService
    {
        ConnectionString = new SecureString(azureSqlConnString)
    }
);
client.LinkedServices.CreateOrUpdate(resourceGroup, dataFactoryName, sqlDbLinkedServiceName, sqlDbLinkedService);
Console.WriteLine(SafeJsonConvert.SerializeObject(sqlDbLinkedService, client.SerializationSettings));

Create datasets

In this section, you create two datasets: one for the source and the other for the sink.

Create a dataset for source Azure Blob

Add the following code to the Main method that creates an Azure blob dataset. Learn more from Azure Blob dataset properties on supported properties and details.

You define a dataset that represents the source data in Azure Blob. This Blob dataset refers to the Azure Storage linked service you create in the previous step, and describes:

  • The location of the blob to copy from: FolderPath and FileName;
  • The blob format indicating how to parse the content: TextFormat and its settings (for example, column delimiter).
  • The data structure, including column names and data types which in this case map to the sink SQL table.
// Create a Azure Blob dataset
Console.WriteLine("Creating dataset " + blobDatasetName + "...");
DatasetResource blobDataset = new DatasetResource(
    new AzureBlobDataset
    {
        LinkedServiceName = new LinkedServiceReference
        {
            ReferenceName = storageLinkedServiceName
        },
        FolderPath = inputBlobPath,
        FileName = inputBlobName,
        Format = new TextFormat { ColumnDelimiter = "|" },
        Structure = new List<DatasetDataElement>
        {
            new DatasetDataElement
            {
                Name = "FirstName",
                Type = "String"
            },
            new DatasetDataElement
            {
                Name = "LastName",
                Type = "String"
            }
        }
    }
);
client.Datasets.CreateOrUpdate(resourceGroup, dataFactoryName, blobDatasetName, blobDataset);
Console.WriteLine(SafeJsonConvert.SerializeObject(blobDataset, client.SerializationSettings));

Create a dataset for sink Azure SQL Database

Add the following code to the Main method that creates an Azure SQL Database dataset. Learn more from Azure SQL Database dataset properties on supported properties and details.

You define a dataset that represents the sink data in Azure SQL Database. This dataset refers to the Azure SQL Database linked service you create in the previous step. It also specifies the SQL table that holds the copied data.

// Create a Azure SQL Database dataset
Console.WriteLine("Creating dataset " + sqlDatasetName + "...");
DatasetResource sqlDataset = new DatasetResource(
    new AzureSqlTableDataset
    {
        LinkedServiceName = new LinkedServiceReference
        {
            ReferenceName = sqlDbLinkedServiceName
        },
        TableName = azureSqlTableName
    }
);
client.Datasets.CreateOrUpdate(resourceGroup, dataFactoryName, sqlDatasetName, sqlDataset);
Console.WriteLine(SafeJsonConvert.SerializeObject(sqlDataset, client.SerializationSettings));

Create a pipeline

Add the following code to the Main method that creates a pipeline with a copy activity. In this tutorial, this pipeline contains one activity: copy activity, which takes in the Blob dataset as source and the SQL dataset as sink. Learn more from Copy Activity Overview on copy activity details.

// Create a pipeline with copy activity
Console.WriteLine("Creating pipeline " + pipelineName + "...");
PipelineResource pipeline = new PipelineResource
{
    Activities = new List<Activity>
    {
        new CopyActivity
        {
            Name = "CopyFromBlobToSQL",
            Inputs = new List<DatasetReference>
            {
                new DatasetReference()
                {
                    ReferenceName = blobDatasetName
                }
            },
            Outputs = new List<DatasetReference>
            {
                new DatasetReference
                {
                    ReferenceName = sqlDatasetName
                }
            },
            Source = new BlobSource { },
            Sink = new SqlSink { }
        }
    }
};
client.Pipelines.CreateOrUpdate(resourceGroup, dataFactoryName, pipelineName, pipeline);
Console.WriteLine(SafeJsonConvert.SerializeObject(pipeline, client.SerializationSettings));

Create a pipeline run

Add the following code to the Main method that triggers a pipeline run.

// Create a pipeline run
Console.WriteLine("Creating pipeline run...");
CreateRunResponse runResponse = client.Pipelines.CreateRunWithHttpMessagesAsync(resourceGroup, dataFactoryName, pipelineName).Result.Body;
Console.WriteLine("Pipeline run ID: " + runResponse.RunId);

Monitor a pipeline run

  1. Add the following code to the Main method to continuously check the status of the pipeline run until it finishes copying the data.

    // Monitor the pipeline run
    Console.WriteLine("Checking pipeline run status...");
    PipelineRun pipelineRun;
    while (true)
    {
        pipelineRun = client.PipelineRuns.Get(resourceGroup, dataFactoryName, runResponse.RunId);
        Console.WriteLine("Status: " + pipelineRun.Status);
        if (pipelineRun.Status == "InProgress")
            System.Threading.Thread.Sleep(15000);
        else
            break;
    }
  2. Add the following code to the Main method that retrieves copy activity run details, for example, size of the data read/written.

    // Check the copy activity run details
    Console.WriteLine("Checking copy activity run details...");
    
    List<ActivityRun> activityRuns = client.ActivityRuns.ListByPipelineRun(
    resourceGroup, dataFactoryName, runResponse.RunId, DateTime.UtcNow.AddMinutes(-10), DateTime.UtcNow.AddMinutes(10)).ToList(); 
    
    if (pipelineRun.Status == "Succeeded")
    {
        Console.WriteLine(activityRuns.First().Output);
    }
    else
        Console.WriteLine(activityRuns.First().Error);
    
    Console.WriteLine("\nPress any key to exit...");
    Console.ReadKey();

Run the code

Build and start the application, then verify the pipeline execution.

The console prints the progress of creating a data factory, linked service, datasets, pipeline, and pipeline run. It then checks the pipeline run status. Wait until you see the copy activity run details with data read/written size. Then, use tools such as SSMS (SQL Server Management Studio) or Visual Studio to connect to your destination Azure SQL Database and check if the data is copied into the table you specified.

Sample output

Creating a data factory AdfV2Tutorial...
{
  "identity": {
    "type": "SystemAssigned"
  },
  "location": "East US"
}
Creating linked service AzureStorageLinkedService...
{
  "properties": {
    "type": "AzureStorage",
    "typeProperties": {
      "connectionString": {
        "type": "SecureString",
        "value": "DefaultEndpointsProtocol=https;AccountName=<accountName>;AccountKey=<accountKey>"
      }
    }
  }
}
Creating linked service AzureSqlDbLinkedService...
{
  "properties": {
    "type": "AzureSqlDatabase",
    "typeProperties": {
      "connectionString": {
        "type": "SecureString",
        "value": "Server=tcp:<servername>.database.windows.net,1433;Database=<databasename>;User ID=<username>@<servername>;Password=<password>;Trusted_Connection=False;Encrypt=True;Connection Timeout=30"
      }
    }
  }
}
Creating dataset BlobDataset...
{
  "properties": {
    "type": "AzureBlob",
    "typeProperties": {
      "folderPath": "adfv2tutorial/",
      "fileName": "inputEmp.txt",
      "format": {
        "type": "TextFormat",
        "columnDelimiter": "|"
      }
    },
    "structure": [
      {
        "name": "FirstName",
        "type": "String"
      },
      {
        "name": "LastName",
        "type": "String"
      }
    ],
    "linkedServiceName": {
      "type": "LinkedServiceReference",
      "referenceName": "AzureStorageLinkedService"
    }
  }
}
Creating dataset SqlDataset...
{
  "properties": {
    "type": "AzureSqlTable",
    "typeProperties": {
      "tableName": "dbo.emp"
    },
    "linkedServiceName": {
      "type": "LinkedServiceReference",
      "referenceName": "AzureSqlDbLinkedService"
    }
  }
}
Creating pipeline Adfv2TutorialBlobToSqlCopy...
{
  "properties": {
    "activities": [
      {
        "type": "Copy",
        "typeProperties": {
          "source": {
            "type": "BlobSource"
          },
          "sink": {
            "type": "SqlSink"
          }
        },
        "inputs": [
          {
            "type": "DatasetReference",
            "referenceName": "BlobDataset"
          }
        ],
        "outputs": [
          {
            "type": "DatasetReference",
            "referenceName": "SqlDataset"
          }
        ],
        "name": "CopyFromBlobToSQL"
      }
    ]
  }
}
Creating pipeline run...
Pipeline run ID: 1cd03653-88a0-4c90-aabc-ae12d843e252
Checking pipeline run status...
Status: InProgress
Status: InProgress
Status: Succeeded
Checking copy activity run details...
{
  "dataRead": 18,
  "dataWritten": 28,
  "rowsCopied": 2,
  "copyDuration": 2,
  "throughput": 0.01,
  "errors": [],
  "effectiveIntegrationRuntime": "DefaultIntegrationRuntime (East US)",
  "usedDataIntegrationUnits": 2,
  "billedDuration": 2
}

Press any key to exit...

Next steps

The pipeline in this sample copies data from one location to another location in an Azure blob storage. You learned how to:

[!div class="checklist"]

  • Create a data factory.
  • Create Azure Storage and Azure SQL Database linked services.
  • Create Azure Blob and Azure SQL Database datasets.
  • Create a pipeline contains a Copy activity.
  • Start a pipeline run.
  • Monitor the pipeline and activity runs.

Advance to the following tutorial to learn about copying data from on-premises to cloud:

[!div class="nextstepaction"] Copy data from on-premises to cloud