Skip to content

Files

Latest commit

2d3b3c7 · May 23, 2018

History

History
386 lines (333 loc) · 13.7 KB

iot-accelerators-connecting-devices-node.md

File metadata and controls

386 lines (333 loc) · 13.7 KB
title description author manager ms.service services ms.topic ms.date ms.author
Provision devices to Remote Monitoring in Node.js - Azure | Microsoft Docs
Describes how to connect a device to the Remote Monitoring solution accelerator using an application written in Node.js.
dominicbetts
timlt
iot-accelerators
iot-accelerators
conceptual
01/24/2018
dobett

Connect your device to the Remote Monitoring solution accelerator (Node.js)

[!INCLUDE iot-suite-selector-connecting]

This tutorial shows you how to connect a physical device to the Remote Monitoring solution accelerator. In this tutorial, you use Node.js, which is a good option for environments with minimal resource constraints.

Create a Node.js solution

Ensure that Node.js version 4.0.0 or later is installed on your development machine. You can run node --version at the command line to check the version.

  1. Create a folder called remotemonitoring on your development machine. Navigate to this folder in your command-line environment.

  2. To download and install the packages you need to complete the sample app, run the following commands:

    npm init
    npm install async azure-iot-device azure-iot-device-mqtt --save
    
  3. In the remotemonitoring folder, create a file called remote_monitoring.js. Open this file in a text editor.

  4. In the remote_monitoring.js file, add the following require statements:

    var Protocol = require('azure-iot-device-mqtt').Mqtt;
    var Client = require('azure-iot-device').Client;
    var ConnectionString = require('azure-iot-device').ConnectionString;
    var Message = require('azure-iot-device').Message;
    var async = require('async');
    
  5. Add the following variable declarations after the require statements. Replace the placeholder value {device connection string} with value you noted for the device you provisioned in the Remote Monitoring solution:

    var connectionString = '{device connection string}';
    var deviceId = ConnectionString.parse(connectionString).DeviceId;
    
  6. To define some base telemetry data, add the following variables:

    var temperature = 50;
    var temperatureUnit = 'F';
    var humidity = 50;
    var humidityUnit = '%';
    var pressure = 55;
    var pressureUnit = 'psig';
    
  7. To define some property values, add the following variables:

    var temperatureSchema = 'chiller-temperature;v1';
    var humiditySchema = 'chiller-humidity;v1';
    var pressureSchema = 'chiller-pressure;v1';
    var interval = "00:00:05";
    var deviceType = "Chiller";
    var deviceFirmware = "1.0.0";
    var deviceFirmwareUpdateStatus = "";
    var deviceLocation = "Building 44";
    var deviceLatitude = 47.638928;
    var deviceLongitude = -122.13476;
    var deviceOnline = true;
    
  8. Add the following variable to define the reported properties to send to the solution. These properties include metadata to describe the methods and telemetry the device uses:

    var reportedProperties = {
      "Protocol": "MQTT",
      "SupportedMethods": "Reboot,FirmwareUpdate,EmergencyValveRelease,IncreasePressure",
      "Telemetry": {
        "TemperatureSchema": {
          "Interval": interval,
          "MessageTemplate": "{\"temperature\":${temperature},\"temperature_unit\":\"${temperature_unit}\"}",
          "MessageSchema": {
            "Name": temperatureSchema,
            "Format": "JSON",
            "Fields": {
              "temperature": "Double",
              "temperature_unit": "Text"
            }
          }
        },
        "HumiditySchema": {
          "Interval": interval,
          "MessageTemplate": "{\"humidity\":${humidity},\"humidity_unit\":\"${humidity_unit}\"}",
          "MessageSchema": {
            "Name": humiditySchema,
            "Format": "JSON",
            "Fields": {
              "humidity": "Double",
              "humidity_unit": "Text"
            }
          }
        },
        "PressureSchema": {
          "Interval": interval,
          "MessageTemplate": "{\"pressure\":${pressure},\"pressure_unit\":\"${pressure_unit}\"}",
          "MessageSchema": {
            "Name": pressureSchema,
            "Format": "JSON",
            "Fields": {
              "pressure": "Double",
              "pressure_unit": "Text"
            }
          }
        }
      },
      "Type": deviceType,
      "Firmware": deviceFirmware,
      "FirmwareUpdateStatus": deviceFirmwareUpdateStatus,
      "Location": deviceLocation,
      "Latitude": deviceLatitude,
      "Longitude": deviceLongitude,
      "Online": deviceOnline
    }
    
  9. To print operation results, add the following helper function:

    function printErrorFor(op) {
        return function printError(err) {
            if (err) console.log(op + ' error: ' + err.toString());
        };
    }
    
  10. Add the following helper function to use to randomize the telemetry values:

    function generateRandomIncrement() {
        return ((Math.random() * 2) - 1);
    }
    
  11. Add the following generic function to handle direct method calls from the solution. The function displays information about the direct method that was invoked, but in this sample does not modify the device in any way. The solution uses direct methods to act on devices:

    function onDirectMethod(request, response) {
      // Implement logic asynchronously here.
      console.log('Simulated ' + request.methodName);
    
      // Complete the response
      response.send(200, request.methodName + ' was called on the device', function (err) {
        if (err) console.error('Error sending method response :\n' + err.toString());
        else console.log('200 Response to method \'' + request.methodName + '\' sent successfully.');
      });
    }
    
  12. Add the following function to handle the FirmwareUpdate direct method calls from the solution. The function verifies the parameters passed in the direct method payload and then asynchronously runs a firmware update simulation:

    function onFirmwareUpdate(request, response) {
      // Get the requested firmware version from the JSON request body
      var firmwareVersion = request.payload.Firmware;
      var firmwareUri = request.payload.FirmwareUri;
      
      // Ensure we got a firmware values
      if (!firmwareVersion || !firmwareUri) {
        response.send(400, 'Missing firmware value', function(err) {
          if (err) console.error('Error sending method response :\n' + err.toString());
          else console.log('400 Response to method \'' + request.methodName + '\' sent successfully.');
        });
      } else {
        // Respond the cloud app for the device method
        response.send(200, 'Firmware update started.', function(err) {
          if (err) console.error('Error sending method response :\n' + err.toString());
          else {
            console.log('200 Response to method \'' + request.methodName + '\' sent successfully.');
    
            // Run the simulated firmware update flow
            runFirmwareUpdateFlow(firmwareVersion, firmwareUri);
          }
        });
      }
    }
    
  13. Add the following function to simulate a long-running firmware update flow that reports progress back to the solution:

    // Simulated firmwareUpdate flow
    function runFirmwareUpdateFlow(firmwareVersion, firmwareUri) {
      console.log('Simulating firmware update flow...');
      console.log('> Firmware version passed: ' + firmwareVersion);
      console.log('> Firmware URI passed: ' + firmwareUri);
      async.waterfall([
        function (callback) {
          console.log("Image downloading from " + firmwareUri);
          var patch = {
            FirmwareUpdateStatus: 'Downloading image..'
          };
          reportUpdateThroughTwin(patch, callback);
          sleep(10000, callback);
        },
        function (callback) {
          console.log("Downloaded, applying firmware " + firmwareVersion);
          deviceOnline = false;
          var patch = {
            FirmwareUpdateStatus: 'Applying firmware..',
            Online: false
          };
          reportUpdateThroughTwin(patch, callback);
          sleep(8000, callback);
        },
        function (callback) {
          console.log("Rebooting");
          var patch = {
            FirmwareUpdateStatus: 'Rebooting..'
          };
          reportUpdateThroughTwin(patch, callback);
          sleep(10000, callback);
        },
        function (callback) {
          console.log("Firmware updated to " + firmwareVersion);
          deviceOnline = true;
          var patch = {
            FirmwareUpdateStatus: 'Firmware updated',
            Online: true,
            Firmware: firmwareVersion
          };
          reportUpdateThroughTwin(patch, callback);
          callback(null);
        }
      ], function(err) {
        if (err) {
          console.error('Error in simulated firmware update flow: ' + err.message);
        } else {
          console.log("Completed simulated firmware update flow");
        }
      });
    
      // Helper function to update the twin reported properties.
      function reportUpdateThroughTwin(patch, callback) {
        console.log("Sending...");
        console.log(JSON.stringify(patch, null, 2));
        client.getTwin(function(err, twin) {
          if (!err) {
            twin.properties.reported.update(patch, function(err) {
              if (err) callback(err);
            });      
          } else {
            if (err) callback(err);
          }
        });
      }
    
      function sleep(milliseconds, callback) {
        console.log("Simulate a delay (milleseconds): " + milliseconds);
        setTimeout(function () {
          callback(null);
        }, milliseconds);
      }
    }
    
  14. Add the following code to send telemetry data to the solution. The client app adds properties to the message to identify the message schema:

    function sendTelemetry(data, schema) {
      if (deviceOnline) {
        var d = new Date();
        var payload = JSON.stringify(data);
        var message = new Message(payload);
        message.properties.add('$$CreationTimeUtc', d.toISOString());
        message.properties.add('$$MessageSchema', schema);
        message.properties.add('$$ContentType', 'JSON');
    
        console.log('Sending device message data:\n' + payload);
        client.sendEvent(message, printErrorFor('send event'));
      } else {
        console.log('Offline, not sending telemetry');
      }
    }
    
  15. Add the following code to create a client instance:

    var client = Client.fromConnectionString(connectionString, Protocol);
    
  16. Add the following code to:

    • Open the connection.
    • Set up a handler for desired properties.
    • Send reported properties.
    • Register handlers for the direct methods. The sample uses a separate handler for the firmware update direct method.
    • Start sending telemetry.
    client.open(function (err) {
      if (err) {
        printErrorFor('open')(err);
      } else {
        // Create device Twin
        client.getTwin(function (err, twin) {
          if (err) {
            console.error('Could not get device twin');
          } else {
            console.log('Device twin created');
    
            twin.on('properties.desired', function (delta) {
              // Handle desired properties set by solution
              console.log('Received new desired properties:');
              console.log(JSON.stringify(delta));
            });
    
            // Send reported properties
            twin.properties.reported.update(reportedProperties, function (err) {
              if (err) throw err;
              console.log('Twin state reported');
            });
    
            // Register handlers for all the method names we are interested in.
            // Consider separate handlers for each method.
            client.onDeviceMethod('Reboot', onDirectMethod);
            client.onDeviceMethod('FirmwareUpdate', onFirmwareUpdate);
            client.onDeviceMethod('EmergencyValveRelease', onDirectMethod);
            client.onDeviceMethod('IncreasePressure', onDirectMethod);
          }
        });
    
        // Start sending telemetry
        var sendTemperatureInterval = setInterval(function () {
          temperature += generateRandomIncrement();
          var data = {
            'temperature': temperature,
            'temperature_unit': temperatureUnit
          };
          sendTelemetry(data, temperatureSchema)
        }, 5000);
    
        var sendHumidityInterval = setInterval(function () {
          humidity += generateRandomIncrement();
          var data = {
            'humidity': humidity,
            'humidity_unit': humidityUnit
          };
          sendTelemetry(data, humiditySchema)
        }, 5000);
    
        var sendPressureInterval = setInterval(function () {
          pressure += generateRandomIncrement();
          var data = {
            'pressure': pressure,
            'pressure_unit': pressureUnit
          };
          sendTelemetry(data, pressureSchema)
        }, 5000);
    
        client.on('error', function (err) {
          printErrorFor('client')(err);
          if (sendTemperatureInterval) clearInterval(sendTemperatureInterval);
          if (sendHumidityInterval) clearInterval(sendHumidityInterval);
          if (sendPressureInterval) clearInterval(sendPressureInterval);
          client.close(printErrorFor('client.close'));
        });
      }
    });
    
  17. Save the changes to the remote_monitoring.js file.

  18. To launch the sample application, run the following command at a command prompt:

    node remote_monitoring.js
    

[!INCLUDE iot-suite-visualize-connecting]