forked from Bailey-24/Rekep
-
Notifications
You must be signed in to change notification settings - Fork 0
/
path_solver.py
322 lines (295 loc) · 14.3 KB
/
path_solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import numpy as np
from scipy.optimize import dual_annealing, minimize
from scipy.interpolate import RegularGridInterpolator
import copy
import time
import transform_utils as T
from utils import (
farthest_point_sampling,
get_linear_interpolation_steps,
linear_interpolate_poses,
normalize_vars,
unnormalize_vars,
get_samples_jitted,
calculate_collision_cost,
path_length,
transform_keypoints,
)
import torch
# ====================================
# = objective function
# ====================================
def objective(opt_vars,
og_bounds,
start_pose,
end_pose,
keypoints_centered,
keypoint_movable_mask,
path_constraints,
sdf_func,
collision_points_centered,
opt_interpolate_pos_step_size,
opt_interpolate_rot_step_size,
ik_solver,
initial_joint_pos,
reset_joint_pos,
return_debug_dict=False):
debug_dict = {}
debug_dict['num_control_points'] = len(opt_vars) // 6
# unnormalize variables and do conversion
unnormalized_opt_vars = unnormalize_vars(opt_vars, og_bounds)
control_points_euler = np.concatenate([start_pose[None], unnormalized_opt_vars.reshape(-1, 6), end_pose[None]], axis=0) # [num_control_points, 6]
control_points_homo = T.convert_pose_euler2mat(control_points_euler) # [num_control_points, 4, 4]
control_points_quat = T.convert_pose_mat2quat(control_points_homo) # [num_control_points, 7]
# get dense samples
poses_quat, num_poses = get_samples_jitted(control_points_homo, control_points_quat, opt_interpolate_pos_step_size, opt_interpolate_rot_step_size)
poses_homo = T.convert_pose_quat2mat(poses_quat)
debug_dict['num_poses'] = num_poses
start_idx, end_idx = 1, num_poses - 1 # exclude start and goal
cost = 0
# collision cost
if collision_points_centered is not None:
collision_cost = 0.5 * calculate_collision_cost(poses_homo[start_idx:end_idx], sdf_func, collision_points_centered, 0.20)
debug_dict['collision_cost'] = collision_cost
cost += collision_cost
# penalize path length
pos_length, rot_length = path_length(poses_homo)
approx_length = pos_length + rot_length * 1.0
path_length_cost = 4.0 * approx_length
debug_dict['path_length_cost'] = path_length_cost
cost += path_length_cost
# reachability cost
ik_cost = 0
reset_reg_cost = 0
debug_dict['ik_pos_error'] = []
debug_dict['ik_feasible'] = []
max_iterations = 20
for control_point_homo in control_points_homo:
ik_result = ik_solver.solve(
control_point_homo,
max_iterations=max_iterations,
initial_joint_pos=initial_joint_pos,
)
debug_dict['ik_pos_error'].append(ik_result.position_error)
debug_dict['ik_feasible'].append(ik_result.success)
ik_cost += 20.0 * (ik_result.num_descents / max_iterations)
if ik_result.success:
reset_joint_pos = reset_joint_pos.detach().cpu().numpy() if torch.is_tensor(reset_joint_pos) else reset_joint_pos
reset_reg = np.linalg.norm(ik_result.cspace_position[:-1] - reset_joint_pos[:-1])
reset_reg = np.clip(reset_reg, 0.0, 3.0)
else:
reset_reg = 3.0
reset_reg_cost += 0.2 * reset_reg
debug_dict['ik_pos_error'] = np.array(debug_dict['ik_pos_error'])
debug_dict['ik_feasible'] = np.array(debug_dict['ik_feasible'])
debug_dict['ik_cost'] = ik_cost
debug_dict['reset_reg_cost'] = reset_reg_cost
cost += ik_cost
# # path constraint violation cost
debug_dict['path_violation'] = None
if path_constraints is not None and len(path_constraints) > 0:
path_constraint_cost = 0
path_violation = []
for pose in poses_homo[start_idx:end_idx]:
transformed_keypoints = transform_keypoints(pose, keypoints_centered, keypoint_movable_mask)
for constraint in path_constraints:
violation = constraint(transformed_keypoints[0], transformed_keypoints[1:])
path_violation.append(violation)
path_constraint_cost += np.clip(violation, 0, np.inf)
path_constraint_cost = 200.0*path_constraint_cost
debug_dict['path_constraint_cost'] = path_constraint_cost
debug_dict['path_violation'] = path_violation
cost += path_constraint_cost
debug_dict['total_cost'] = cost
if return_debug_dict:
return cost, debug_dict
return cost
class PathSolver:
"""
Given a goal pose and a start pose, solve for a sequence of intermediate poses for the end effector to follow.
Optimization variables:
- sequence of intermediate control points
"""
def __init__(self, config, ik_solver, reset_joint_pos):
self.config = config
self.ik_solver = ik_solver
self.reset_joint_pos = reset_joint_pos
self.last_opt_result = None
# warmup
self._warmup()
def _warmup(self):
start_pose = np.array([0.0, 0.0, 0.3, 0, 0, 0, 1])
end_pose = np.array([0.0, 0.0, 0.0, 0, 0, 0, 1])
keypoints = np.random.rand(10, 3)
keypoint_movable_mask = np.random.rand(10) > 0.5
path_constraints = []
sdf_voxels = np.zeros((10, 10, 10))
collision_points = np.random.rand(100, 3)
self.solve(start_pose, end_pose, keypoints, keypoint_movable_mask, path_constraints, sdf_voxels, collision_points, None, from_scratch=True)
self.last_opt_result = None
def _setup_sdf(self, sdf_voxels):
# create callable sdf function with interpolation
x = np.linspace(self.config['bounds_min'][0], self.config['bounds_max'][0], sdf_voxels.shape[0])
y = np.linspace(self.config['bounds_min'][1], self.config['bounds_max'][1], sdf_voxels.shape[1])
z = np.linspace(self.config['bounds_min'][2], self.config['bounds_max'][2], sdf_voxels.shape[2])
sdf_func = RegularGridInterpolator((x, y, z), sdf_voxels, bounds_error=False, fill_value=0)
return sdf_func
def _check_opt_result(self, opt_result, path_quat, debug_dict, og_bounds):
# accept the opt_result if it's only terminated due to iteration limit
if (not opt_result.success and ('maximum' in opt_result.message.lower() or 'iteration' in opt_result.message.lower() or 'not necessarily' in opt_result.message.lower())):
opt_result.success = True
elif not opt_result.success:
opt_result.message += '; invalid solution'
# check whether path constraints are satisfied
if debug_dict['path_violation'] is not None:
path_violation = np.array(debug_dict['path_violation'])
opt_result.message += f'; path_violation: {path_violation}'
path_constraints_satisfied = all([violation <= self.config['constraint_tolerance'] for violation in path_violation])
if not path_constraints_satisfied:
opt_result.success = False
opt_result.message += f'; path constraint not satisfied'
return opt_result
def _center_collision_points_and_keypoints(self, ee_pose, collision_points, keypoints, keypoint_movable_mask):
ee_pose_homo = T.pose2mat([ee_pose[:3], T.euler2quat(ee_pose[3:])])
centering_transform = np.linalg.inv(ee_pose_homo)
collision_points_centered = np.dot(collision_points, centering_transform[:3, :3].T) + centering_transform[:3, 3]
keypoints_centered = transform_keypoints(centering_transform, keypoints, keypoint_movable_mask)
return collision_points_centered, keypoints_centered
def solve(self,
start_pose,
end_pose,
keypoints,
keypoint_movable_mask,
path_constraints,
sdf_voxels,
collision_points,
initial_joint_pos,
from_scratch=False):
"""
Args:
- start_pose (np.ndarray): [7], [x, y, z, qx, qy, qz, qw]
- end_pose (np.ndarray): [7], [x, y, z, qx, qy, qz, qw]
- keypoints (np.ndarray): [num_keypoints, 3]
- keypoint_movable_mask (bool): whether the keypoints are on the object being grasped
- path_constraints (List[Callable]): path constraints
- sdf_voxels (np.ndarray): [H, W, D]
- collision_points (np.ndarray): [num_points, 3], point cloud of the object being grasped
- initial_joint_pos (np.ndarray): [N] initial joint positions of the robot.
- from_scratch (bool): whether to start from scratch
Returns:
- opt_result (scipy.optimize.OptimizeResult): optimization opt_result
- debug_dict (dict): debug information
"""
# downsample collision points
if collision_points is not None and collision_points.shape[0] > self.config['max_collision_points']:
collision_points = farthest_point_sampling(collision_points, self.config['max_collision_points'])
sdf_func = self._setup_sdf(sdf_voxels)
# ====================================
# = setup bounds
# ====================================
# calculate an appropriate number of control points, including start and goal
num_control_points = get_linear_interpolation_steps(start_pose, end_pose, self.config['opt_pos_step_size'], self.config['opt_rot_step_size'])
num_control_points = np.clip(num_control_points, 3, 6)
# transform to euler representation
start_pose = np.concatenate([start_pose[:3], T.quat2euler(start_pose[3:])])
end_pose = np.concatenate([end_pose[:3], T.quat2euler(end_pose[3:])])
# bounds for decision variables
og_bounds = [(b_min, b_max) for b_min, b_max in zip(self.config['bounds_min'], self.config['bounds_max'])] + \
[(-np.pi, np.pi) for _ in range(3)]
og_bounds *= (num_control_points - 2)
og_bounds = np.array(og_bounds, dtype=np.float64)
bounds = [(-1, 1)] * len(og_bounds)
num_vars = len(bounds)
# ====================================
# = setup initial guess
# ====================================
# use previous opt_result as initial guess if available
if not from_scratch and self.last_opt_result is not None:
init_sol = self.last_opt_result.x
# if there are more control points in this iter, fill the rest with the last value + small noise
if len(init_sol) < num_vars:
new_x0 = np.empty(num_vars)
new_x0[:len(init_sol)] = init_sol
for i in range(len(init_sol), num_vars, 6):
new_x0[i:i+6] = init_sol[-6:] + np.random.randn(6) * 0.01
init_sol = new_x0
# otherwise, use the last num_vars values
else:
init_sol = init_sol[-num_vars:]
# initial guess as linear interpolation
else:
from_scratch = True
interp_poses = linear_interpolate_poses(start_pose, end_pose, num_control_points) # [num_control_points, 6]
init_sol = interp_poses[1:-1].flatten() # [num_control_points-2, 6]
init_sol = normalize_vars(init_sol, og_bounds)
# clip the initial guess to be within bounds
for i, (b_min, b_max) in enumerate(bounds):
init_sol[i] = np.clip(init_sol[i], b_min, b_max)
# ====================================
# = other setup
# ====================================
collision_points_centered, keypoints_centered = self._center_collision_points_and_keypoints(start_pose, collision_points, keypoints, keypoint_movable_mask)
aux_args = (og_bounds,
start_pose,
end_pose,
keypoints_centered,
keypoint_movable_mask,
path_constraints,
sdf_func,
collision_points_centered,
self.config['opt_interpolate_pos_step_size'],
self.config['opt_interpolate_rot_step_size'],
self.ik_solver,
initial_joint_pos,
self.reset_joint_pos)
# ====================================
# = solve optimization
# ====================================
start = time.time()
# use global optimization for the first iteration
if from_scratch:
opt_result = dual_annealing(
func=objective,
bounds=bounds,
args=aux_args,
maxfun=self.config['sampling_maxfun'],
x0=init_sol,
no_local_search=True,
minimizer_kwargs={
'method': 'SLSQP',
'options': self.config['minimizer_options'],
},
)
# use gradient-based local optimization for the following iterations
else:
opt_result = minimize(
fun=objective,
x0=init_sol,
args=aux_args,
bounds=bounds,
method='SLSQP',
options=self.config['minimizer_options'],
)
solve_time = time.time() - start
# ====================================
# = post-process opt_result
# ====================================
if isinstance(opt_result.message, list):
opt_result.message = opt_result.message[0]
# rerun to get debug info
_, debug_dict = objective(opt_result.x, *aux_args, return_debug_dict=True)
debug_dict['sol'] = opt_result.x.reshape(-1, 6)
debug_dict['msg'] = opt_result.message
debug_dict['solve_time'] = solve_time
debug_dict['from_scratch'] = from_scratch
debug_dict['type'] = 'path_solver'
# unnormailze
sol = unnormalize_vars(opt_result.x, og_bounds)
# add end pose
poses_euler = np.concatenate([sol.reshape(-1, 6), end_pose[None]], axis=0)
poses_quat = T.convert_pose_euler2quat(poses_euler) # [num_control_points, 7]
opt_result = self._check_opt_result(opt_result, poses_quat, debug_dict, og_bounds)
# cache opt_result for future use if successful
if opt_result.success:
self.last_opt_result = copy.deepcopy(opt_result)
return poses_quat, debug_dict