forked from hadley/r4ds
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransform.Rmd
945 lines (672 loc) · 35.5 KB
/
transform.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
# Data transformation {#transform}
```{r setup-transform, include = FALSE}
library(dplyr)
library(nycflights13)
library(ggplot2)
```
Visualisation is an important tool for insight generation, but it is rare that you get the data in exactly the right form you need for visualisation. Often you'll need to create some new variables or summaries, or maybe you just want to rename the variables or reorder the observations in order to make the data a little easier to work with. You'll learn how to do all that (and more!) in this chapter which will teach you how to transform your data using the dplyr package.
When working with data you must:
1. Figure out what you want to do.
1. Precisely describe what you want to do in such a way that the
computer can understand it (i.e. program it).
1. Execute the program.
The dplyr package makes these steps fast and easy:
* By constraining your options, it simplifies how you can think about
common data manipulation tasks.
* It provides simple "verbs", functions that correspond to the most
common data manipulation tasks, to help you translate those thoughts
into code.
* It uses efficient data storage backends, so you spend less time
waiting for the computer.
In this chapter you'll learn the key verbs of dplyr in the context of a new dataset on flights departing New York City in 2013.
## nycflights13
To explore the basic data manipulation verbs of dplyr, we'll use the `flights` data frame from the nycflights13 package. This data frame contains all `r format(nrow(nycflights13::flights), big.mark = ",")` flights that departed from New York City in 2013. The data comes from the US [Bureau of Transportation Statistics](http://www.transtats.bts.gov/DatabaseInfo.asp?DB_ID=120&Link=0), and is documented in `?nycflights13`.
```{r}
library(dplyr)
library(nycflights13)
flights
```
The first important thing to notice about this dataset is that it prints a little differently to most data frames: it only shows the first few rows and all the columns that fit on one screen. If you want to see the whole dataset, use `View()` which will open the dataset in the RStudio viewer.
It also prints an abbreviated description of the column type:
* int: integer
* dbl: double (real)
* chr: character
* lgl: logical
It prints differently because it has a different "class" to usual data frames:
```{r}
class(flights)
```
This is called a `tbl_df` (pronounced "tibble diff") or a `data_frame` (pronounced "data underscore frame"; cf. `data dot frame`). Generally, however, we won't worry about this relatively minor difference and will refer to everything as data frames.
You'll learn more about how `data_frame` works in data structures. If you want to convert your own data frames to this special case, use `as.data_frame()`. I recommend it for large data frames as it makes interactive exploration much less painful.
To create your own new tbl\_df from individual vectors, use `data_frame()`:
```{r}
data_frame(x = 1:3, y = c("a", "b", "c"))
```
--------------------------------------------------------------------------------
There are two other important differences between tbl_dfs and data.frames:
* When you subset a tbl\_df with `[`, it always returns another tbl\_df.
Contrast this with a data frame: sometimes `[` returns a data frame and
sometimes it just returns a single column (i.e. a vector):
```{r}
df1 <- data.frame(x = 1:3, y = 3:1)
class(df1[, 1:2])
class(df1[, 1])
df2 <- data_frame(x = 1:3, y = 3:1)
class(df2[, 1:2])
class(df2[, 1])
```
To extract a single column from a tbl\_df use `[[` or `$`:
```{r}
class(df2[[1]])
class(df2$x)
```
* When you extract a variable with `$`, tbl\_dfs never do partial
matching. They'll throw an error if the column doesn't exist:
```{r, error = TRUE}
df <- data.frame(abc = 1)
df$a
df2 <- data_frame(abc = 1)
df2$a
```
--------------------------------------------------------------------------------
## Dplyr verbs
There are five dplyr functions that you will use to do the vast majority of data manipulations:
* reorder the rows (`arrange()`),
* pick observations by their values (`filter()`),
* pick variables by their names (`select()`),
* create new variables with functions of existing variables (`mutate()`), or
* collapse many values down to a single summary (`summarise()`).
These can all be used in conjunction with `group_by()` which changes the scope of each function from operating on the entire dataset to operating on it group-by-group. These six functions provide the verbs for a language of data manipulation.
All verbs work similarly:
1. The first argument is a data frame.
1. The subsequent arguments describe what to do with the data frame.
You can refer to columns in the data frame directly without using `$`.
1. The result is a new data frame.
Together these properties make it easy to chain together multiple simple steps to achieve a complex result.
## Filter rows with `filter()`
`filter()` allows you to subset observations. The first argument is the name of the data frame. The second and subsequent arguments are the expressions that filter the data frame. For example, we can select all flights on January 1st with:
```{r}
filter(flights, month == 1, day == 1)
```
--------------------------------------------------------------------------------
This is equivalent to the more verbose base code:
```{r, eval = FALSE}
flights[flights$month == 1 & flights$day == 1 &
!is.na(flights$month) & !is.na(flights$day), , drop = FALSE]
```
Or with the base `subset()` function:
```{r, eval = FALSE}
subset(flights, month == 1 & day == 1)
```
`filter()` works similarly to `subset()` except that you can give it any number of filtering conditions, which are joined together with `&`.
--------------------------------------------------------------------------------
When you run this line of code, dplyr executes the filtering operation and returns a new data frame. dplyr functions never modify their inputs, so if you want to save the results, you'll need to use the assignment operator `<-`:
```{r}
jan1 <- filter(flights, month == 1, day == 1)
```
R either prints out the results, or saves them to a variable. If you want to do both, wrap the assignment in parentheses:
```{r}
(dec25 <- filter(flights, month == 12, day == 25))
```
### Comparisons
R provides the standard suite of numeric comparison operators: `>`, `>=`, `<`, `<=`, `!=` (not equal), and `==` (equal).
When you're starting out with R, the easiest mistake to make is to use `=` instead of `==` when testing for equality. When this happens you'll get a somewhat uninformative error:
```{r, error = TRUE}
filter(flights, month = 1)
```
Whenever you see this message, check for `=` instead of `==`.
Beware using `==` with floating point numbers:
```{r}
sqrt(2) ^ 2 == 2
1/49 * 49 == 1
```
It's better to check that you're close:
```{r}
abs(sqrt(2) ^ 2 - 2) < 1e-6
abs(1/49 * 49 - 1) < 1e-6
```
### Logical operators
Multiple arguments to `filter()` are combined with "and". To get more complicated expressions, you can use boolean operators yourself:
```{r, eval = FALSE}
filter(flights, month == 11 | month == 12)
```
Note the order isn't like English. The following expression doesn't find on months that equal 11 or 12. Instead it finds all months that equal `11 | 12`, an expression that evaluates to `TRUE`. In a numeric context (like here), `TRUE` becomes one, so this finds all flights in January, not November or December (It is the equivalent of `filter(flights, month == 1)`).
```{r, eval = FALSE}
filter(flights, month == 11 | 12)
```
Instead you can use the helpful `%in%` shortcut:
```{r}
filter(flights, month %in% c(11, 12))
```
The following figure shows the complete set of boolean operations:
```{r bool-ops, echo = FALSE, fig.cap = "Complete set of boolean operations", out.width = "75%"}
knitr::include_graphics("diagrams/transform-logical.png")
```
Sometimes you can simplify complicated subsetting by remembering De Morgan's law: `!(x & y)` is the same as `!x | !y`, and `!(x | y)` is the same as `!x & !y`. For example, if you wanted to find flights that weren't delayed (on arrival or departure) by more than two hours, you could use either of the following two filters:
```{r, eval = FALSE}
filter(flights, !(arr_delay > 120 | dep_delay > 120))
filter(flights, arr_delay <= 120, dep_delay <= 120)
```
Note that R has both `&` and `|` and `&&` and `||`. `&` and `|` are vectorised: you give them two vectors of logical values and they return a vector of logical values. `&&` and `||` are scalar operators: you give them individual `TRUE`s or `FALSE`s. They're used in `if` statements when programming. You'll learn about that later on in Chapter ?.
Sometimes you want to find all rows after the first `TRUE`, or all rows until the first `FALSE`. The cumulative functions `cumany()` and `cumall()` allow you to find these values:
```{r}
df <- data_frame(
x = c(FALSE, TRUE, FALSE),
y = c(TRUE, FALSE, TRUE)
)
filter(df, cumany(x)) # all rows after first TRUE
filter(df, cumall(y)) # all rows until first FALSE
```
Whenever you start using multipart expressions in your `filter()`, it's typically a good idea to make the expressions explicit variables with `mutate()` so that you can more easily check your work. You'll learn about `mutate()` in the next section.
### Missing values
One important feature of R that can make comparison tricky is the missing value, `NA`. `NA` represents an unknown value so missing values are "contagious": any operation involving an unknown value will also be unknown.
```{r}
NA > 5
10 == NA
NA + 10
NA / 2
```
The most confusing result is this one:
```{r}
NA == NA
```
It's easiest to understand why this is true with a bit more context:
```{r}
# Let x be Mary's age. We don't know how old she is.
x <- NA
# Let y be John's age. We don't know how old he is.
y <- NA
# Are John and Mary the same age?
x == y
# We don't know!
```
If you want to determine if a value is missing, use `is.na()`. (This is such a common mistake RStudio will remind you whenever you use `x == NA`)
`filter()` only includes rows where the condition is `TRUE`; it excludes both `FALSE` and `NA` values. If you want to preserve missing values, ask for them explicitly:
```{r}
df <- data_frame(x = c(1, NA, 3))
filter(df, x > 1)
filter(df, is.na(x) | x > 1)
```
### Exercises
1. Find all the flights that:
* Departed in summer.
* That flew to Houston (`IAH` or `HOU`).
* There were operated by United, American, or Delta.
* That were delayed by more two hours.
* That arrived more than two hours late, but didn't leave late.
* Were delayed by at least an hour, but made up over 30 minutes in flight.
* Departed between midnight and 6am.
1. How many flights have a missing `dep_time`? What other variables are
missing? What might these rows represent?
## Arrange rows with `arrange()`
`arrange()` works similarly to `filter()` except that instead of filtering or selecting rows, it reorders them. It takes a data frame, and a set of column names (or more complicated expressions) to order by. If you provide more than one column name, each additional column will be used to break ties in the values of preceding columns:
```{r}
arrange(flights, year, month, day)
```
Use `desc()` to re-order by a column in descending order:
```{r}
arrange(flights, desc(arr_delay))
```
Missing values always come at the end:
```{r}
df <- data_frame(x = c(5, 2, NA))
arrange(df, x)
arrange(df, desc(x))
```
--------------------------------------------------------------------------------
You can accomplish the same thing in base R using subsetting and `order()`:
```{r}
flights[order(flights$year, flights$month, flights$day), , drop = FALSE]
```
`arrange()` provides a more convenient way of sorting one variable in descending order with the `desc()` helper function.
--------------------------------------------------------------------------------
### Exercises
1. How could use `arrange()` to sort all missing values to the start?
(Hint: use `is.na()`).
1. Sort `flights` to find the most delayed flights. Find the flights that
left earliest.
## Select columns with `select()`
It's not uncommon to get datasets with hundreds or even thousands of variables. In this case, the first challenge is often narrowing in on the variables you're actually interested in. `select()` allows you to rapidly zoom in on a useful subset using operations based on the names of the variables:
```{r}
# Select columns by name
select(flights, year, month, day)
# Select all columns between year and day (inclusive)
select(flights, year:day)
# Select all columns except those from year to day (inclusive)
select(flights, -(year:day))
```
There are a number of helper functions you can use within `select()`:
* `starts_with("abc")`: matches names that begin with "abc".
* `ends_with("xyz")`: matches names that end with "xyz".
* `contains("ijk")`: matches names that contain "ijk".
* `matches("(.)\\1")`: selects variables that match a regular expression.
This one matches any variables that contain repeated characters. You'll
learn more about regular expressions in Chapter XYZ.
* `num_range("x", 1:3)` matches `x1`, `x2` and `x3`.
See `?select` for more details.
It's possible to use `select()` to rename variables:
```{r}
select(flights, tail_num = tailnum)
```
But because `select()` drops all the variables not explicitly mentioned, it's not that useful. Instead, use `rename()`, which is a variant of `select()` that keeps variables by default:
```{r}
rename(flights, tail_num = tailnum)
```
--------------------------------------------------------------------------------
The `select()` function works similarly to the `select` argument in `base::subset()`. `select()` is its own function in dplyr because the dplyr philosophy is to have small functions that each do one thing well.
--------------------------------------------------------------------------------
### Exercises
1. Brainstorm as many ways as possible to select `dep_time`, `dep_delay`,
`arr_time`, and `arr_delay` from `flights`.
## Add new variables with `mutate()`
Besides selecting sets of existing columns, it's often useful to add new columns that are functions of existing columns. This is the job of `mutate()`.
`mutate()` always adds new columns at the end of your dataset so we'll start by creating a narrower dataset so we can see the new variables. Remember that when you're in RStudio, the easiest way to see all the columns is `View()`
```{r}
flights_sml <- select(flights,
year:day,
ends_with("delay"),
distance,
air_time
)
mutate(flights_sml,
gain = arr_delay - dep_delay,
speed = distance / air_time * 60
)
```
Note that you can refer to columns in `mutate()` that you've just created:
```{r}
mutate(flights_sml,
gain = arr_delay - dep_delay,
hours = air_time / 60,
gain_per_hour = gain / hours
)
```
If you only want to keep the new variables, use `transmute()`:
```{r}
transmute(flights,
gain = arr_delay - dep_delay,
hours = air_time / 60,
gain_per_hour = gain / hours
)
```
--------------------------------------------------------------------------------
`mutate()` is similar to `transform()` in base R, but in `mutate()` you can refer to variables you've just created; in `transform()` you cannot.
--------------------------------------------------------------------------------
### Useful functions
There are many functions for creating new variables that you can use with `mutate()`. The key property is that the function must be vectorised: it needs to return the same number of outputs as inputs. There's no way to list every possible function that you might use, but here's a selection of functions that are frequently useful:
* Arithmetic operators: `+`, `-`, `*`, `/`, `^`. These are all vectorised, so
you can work with multiple columns. These operations use "recycling rules"
so if one parameter is shorter than the other, it will be automatically
extended to be the same length. This is most useful when one of the
arguments is a single number: `airtime / 60`, `hours * 60 + minute`, etc.
Arithmetic operators are also useful in conjunction with the aggregate
functions you'll learn about later. For example, `x / sum(x)` calculates
the proportion of a total and `y - mean(y)` computes the difference from
the mean, and so on.
* Modular arithmetic: `%/%` (integer division) and `%%` (remainder), where
`x == y * (x %/% y) + (x %% y)`. Modular arithmetic is a handy tool because
it allows you to break integers up into pieces. For example, in the
flights dataset, you can compute `hour` and `minute` from `dep_time` with:
```{r}
transmute(flights,
dep_time,
hour = dep_time %/% 100,
minute = dep_time %% 100
)
```
* Logs: `log()`, `log2()`, `log10()`. Logarithms are an incredibly useful
transformation for dealing with data that ranges over multiple orders of
magnitude. They also convert multiplicative relationships to additive, a
feature we'll come back to in modelling.
All else being equal, I recommend using `log2()` because it's easy to
interpret: an difference of 1 on the log scale corresponds to doubling on
the original scale and a difference of -1 corresponds to halving.
* Offsets: `lead()` and `lag()` allow you to refer to leading or lagging
values. This allows you to compute running differences (e.g. `x - lag(x)`)
or find when values change (`x != lag(x))`. They are most useful in
conjunction with `group_by()`, which you'll learn about shortly.
```{r}
x <- 1:10
x
lag(x)
lead(x)
```
* Cumulative and rolling aggregates: R provides functions for running sums,
products, mins and maxes: `cumsum()`, `cumprod()`, `cummin()`, `cummax()`.
dplyr provides `cummean()` for cumulative means. If you need rolling
aggregates (i.e. a sum computed over a rolling window), try the RcppRoll
package.
```{r}
x
cumsum(x)
cummean(x)
```
* Logical comparisons, `<`, `<=`, `>`, `>=`, `!=`, which you learned about
earlier. If you're doing a complex sequence of logical operations it's
often a good idea to store the interim values in new variables so you can
check that each step is doing what you expect.
* Ranking: there are a number of ranking functions, but you should
start with `min_rank()`. It does the most usual type of ranking
(e.g. 1st, 2nd, 2nd, 4th). The default gives smallest values the small
ranks; use `desc(x)` to give the largest values the smallest ranks.
```{r}
y <- c(1, 2, 2, NA, 3, 4)
data_frame(
row_number(y),
min_rank(y),
dense_rank(y),
percent_rank(y),
cume_dist(y)
) %>% knitr::kable()
```
If `min_rank()` doesn't do what you need, look at the variants
`row_number()`, `dense_rank()`, `cume_dist()`, `percent_rank()`,
`ntile()`.
### Exercises
```{r, eval = FALSE, echo = FALSE}
flights <- flights %>% mutate(
dep_time = hour * 60 + minute,
arr_time = (arr_time %/% 100) * 60 + (arr_time %% 100),
airtime2 = arr_time - dep_time,
dep_sched = dep_time + dep_delay
)
ggplot(flights, aes(dep_sched)) + geom_histogram(binwidth = 60)
ggplot(flights, aes(dep_sched %% 60)) + geom_histogram(binwidth = 1)
ggplot(flights, aes(air_time - airtime2)) + geom_histogram()
```
1. Currently `dep_time` and `arr_time` are convenient to look at, but
hard to compute with because they're not really continuous numbers.
Convert them to a more convenient representation of number of minutes
since midnight.
1. Compute the scheduled time by adding `dep_delay` to `dep_time`. Plot
the distribution of departure times. What do you think causes the
interesting pattern?
1. Compare `airtime` with `arr_time - dep_time`. What do you expect to see?
What do you see? Why?
1. Find the 10 most delayed flights each day using a ranking function.
How do you want to handle ties? Carefully read the documentation for
`min_rank()`.
## Grouped summaries with `summarise()`
The last verb is `summarise()`. It collapses a data frame to a single row:
```{r}
summarise(flights, delay = mean(dep_delay, na.rm = TRUE))
```
That's not terribly useful unless we pair it with `group_by()`. This changes the unit of analysis from the complete dataset to individual groups. When you use the dplyr verbs on a grouped data frame they'll be automatically applied "by group". For example, if we applied exactly the same code to a data frame grouped by date, we get the average delay per date:
```{r}
by_day <- group_by(flights, year, month, day)
summarise(by_day, delay = mean(dep_delay, na.rm = TRUE))
```
Together `group_by()` and `summarise()` provide one of the tools that you'll use most commonly when working with dplyr: grouped summaries. But before we go any further with this, we need to introduce a powerful new idea: the pipe.
### Combining multiple operations with the pipe
Imagine that we want to explore the relationship between the distance and average delay for each location. Using what you already know about dplyr, you might write code like this:
```{r, fig.width = 6}
by_dest <- group_by(flights, dest)
delay <- summarise(by_dest,
count = n(),
dist = mean(distance, na.rm = TRUE),
delay = mean(arr_delay, na.rm = TRUE))
delay <- filter(delay, count > 20, dest != "HNL")
# Interesting it looks like delays increase with distance up to
# ~750 miles and then decrease. Maybe as flights get longer there's
# more ability to make up delays in the air?
ggplot(delay, aes(dist, delay)) +
geom_point(aes(size = count), alpha = 1/3) +
geom_smooth(se = FALSE)
```
There are three steps to prepare this data:
1. Group flights by destination
2. Summarise to compute distance, average delay, and number of flights.
3. Filter to remove noisy points and Honolulu airport, which is almost
twice as far away as the next closest airport.
This code is a little frustrating to write because we have to give each intermediate data frame a name, even though we don't care about it. Naming things well is hard, so this slows us down.
There's another way to tackle the same problem with the pipe, `%>%`:
```{r}
delays <- flights %>%
group_by(dest) %>%
summarise(
count = n(),
dist = mean(distance, na.rm = TRUE),
delay = mean(arr_delay, na.rm = TRUE)
) %>%
filter(count > 20, dest != "HNL")
```
This focuses on the transformations, not what's being transformed, which makes the code easier to read. You can read it as a series of imperative statements: group, then summarise, then filter. As suggested by this reading, a good way to pronounce `%>%` when reading code is "then".
Behind the scenes, `x %>% f(y)` turns into `f(x, y)`, and `x %>% f(y) %>% g(z)` turns into `g(f(x, y), z)` and so on. You can use the pipe to rewrite multiple operations in a way that you can read left-to-right, top-to-bottom. We'll use piping frequently from now on because it considerably improves the readability of code, and we'll come back to it in more detail in Chapter XYZ.
Most of the packages you'll learn through this book have been designed to work with the pipe (tidyr, dplyr, stringr, purrr, ...). The only exception is ggplot2: it was developed considerably before the pipe was discovered. Unfortunately the next iteration of ggplot2, ggvis, which does use the pipe, isn't ready for prime time yet.
### Missing values
You may have wondered about the `na.rm` argument we used above. What happens if we don't set it?
```{r}
flights %>%
group_by(year, month, day) %>%
summarise(mean = mean(dep_delay))
```
We get a lot of missing values! That's because aggregation functions obey the usual rule of missing values: if there's any missing value in the input, the output will be a missing value. `x %>% f(y)` turns into `f(x, y)`ou'll learn more about aggregation functions in Section 5.7.4. Fortunately, all aggregation functions have an `na.rm` argument which removes the missing values prior to computation:
```{r}
flights %>%
group_by(year, month, day) %>%
summarise(mean = mean(dep_delay, na.rm = TRUE))
```
In this case, where missing values represent cancelled flights, we could also tackle the problem by first removing the cancelled flights:
```{r}
not_cancelled <- filter(flights, !is.na(dep_delay), !is.na(arr_delay))
not_cancelled %>%
group_by(year, month, day) %>%
summarise(mean = mean(dep_delay))
```
### Counts
Whenever you do any aggregation, it's always a good idea to include either a count (`n()`), or a count of non-missing values (`sum(!is.na(x))`). That way you can check that you're not drawing conclusions based on very small amounts of non-missing data.
For example, let's look at the planes (identified by their tail number) that have the highest average delays:
```{r}
delays <- not_cancelled %>%
group_by(tailnum) %>%
summarise(
delay = mean(arr_delay), n()
)
ggplot(delays, aes(delay)) +
geom_histogram(binwidth = 10)
```
Wow, there are some planes that have an _average_ delay of 5 hours!
The story is actually a little more nuanced. We can get more insight if we draw a scatterplot of number of flights vs. average delay:
```{r}
delays <- not_cancelled %>%
group_by(tailnum) %>%
summarise(
delay = mean(arr_delay, na.rm = TRUE),
n = n()
)
ggplot(delays, aes(n, delay)) +
geom_point()
```
Not suprisingly, there is much more variation in the average delay when there are few flights. The shape of this plot is very characteristic: whenever you plot a mean (or many other summaries) vs number of observations, you'll see that the variation decreases as the sample size increases.
When looking at this sort of plot, it's often useful to filter out the groups with the smallest numbers of observations, so you can see more of the pattern and less of the extreme variation in the smallest groups. This is what the following code does, and also shows you a handy pattern for integrating ggplot2 into dplyr flows. It's a bit painful that you have to switch from `%>%` to `+`, but once you get the hang of it, it's quite convenient.
```{r}
delays %>%
filter(n > 25) %>%
ggplot(aes(n, delay)) +
geom_point()
```
--------------------------------------------------------------------------------
RStudio tip: useful keyboard shortcut is Cmd + Shift + P. This resends the previously sent chunk from the editor to the console. This is very convenient when you're (e.g.) exploring the value of `n` in the example above. You send the whole block once with Cmd + Enter, then you modify the value of `n` and press Cmd + Shift + P to resend the complete block.
--------------------------------------------------------------------------------
There's another common variation of this type of pattern. Let's look at how the average performance of batters in baseball is related to the number of times they're at bat. Here I use the Lahman package to compute the batting average (number of hits / number of attempts) of every major league baseball player. When I plot the skill of the batter against the number of times batted, you see two patterns:
1. As above, the variation in our aggregate decreases as we get more
data points.
2. There's a positive correlation between skill and n. This is because teams
control who gets to play, and obviously they'll pick their best players.
```{r}
batting <- tbl_df(Lahman::Batting)
batters <- batting %>%
group_by(playerID) %>%
summarise(
ba = sum(H) / sum(AB),
ab = sum(AB)
)
batters %>%
filter(ab > 100) %>%
ggplot(aes(ab, ba)) +
geom_point() +
geom_smooth(se = FALSE)
```
This also has important implications for ranking. If you naively sort on `desc(ba)`, the people with the best batting averages are clearly lucky, not skilled:
```{r}
batters %>% arrange(desc(ba))
```
You can find a good explanation of this problem at <http://varianceexplained.org/r/empirical_bayes_baseball/> and <http://www.evanmiller.org/how-not-to-sort-by-average-rating.html>.
### Other summary functions.
Just using means, counts, and sum can get you a long way, but R provides many other useful summary functions:
* Measure of location: we've used `mean(x)`, but `median(x)` is also
useful. The mean is the sum divided by the length; the median is a value
where 50% of `x` is above, and 50% is below.
It's sometimes useful to combine aggregation with logical subsetting:
```{r}
not_cancelled %>%
group_by(year, month, day) %>%
summarise(
avg_delay1 = mean(arr_delay),
avg_delay2 = mean(arr_delay[arr_delay > 0]) # the average positive delay
)
```
* Measure of spread: `sd(x)`, `IQR(x)`, `mad(x)`. The mean squared deviation,
or standard deviation or sd for short, is the standard measure of spread.
The interquartile range `IQR()` and median absolute deviation `mad(x)`
are robust equivalents that maybe more useful if you have outliers.
```{r}
# Why is distance to some destinations more variable than to others?
not_cancelled %>%
group_by(dest) %>%
summarise(distance_sd = sd(distance)) %>%
arrange(desc(distance_sd))
```
* Measures of rank: `min(x)`, `quantile(x, 0.25)`, `max(x)`.
```{r}
# When do the first and last flights leave each day?
not_cancelled %>%
group_by(year, month, day) %>%
summarise(
first = min(dep_time),
last = max(dep_time)
)
```
* Measures of position: `first(x)`, `nth(x, 2)`, `last(x)`. These work similarly to
`x[1]`, `n <- 2; x[n]`, and `x[length(x)]` but let you set a default value if that
position does not exist (i.e. you're trying to get the 3rd element from a
group that only has two elements).
These functions are complementary to filtering on ranks. Filtering gives
you all variables, with each observation in a separate row. Summarising
gives you one row per group, with multiple variables:
```{r}
not_cancelled %>%
group_by(year, month, day) %>%
mutate(r = rank(desc(dep_time))) %>%
filter(r %in% c(1, n()))
not_cancelled %>%
group_by(year, month, day) %>%
summarise(first_dep = first(dep_time), last_dep = last(dep_time))
```
* Counts: You've seen `n()`, which takes no arguments, and returns the
size of the current group. To count the number of non-missing values, use
`sum(!is.na(x))`. To count the number of distinct (unique) values, use
`n_distinct(x)`.
```{r}
# Which destinations have the most carriers?
not_cancelled %>%
group_by(dest) %>%
summarise(carriers = n_distinct(carrier)) %>%
arrange(desc(carriers))
```
Counts are so useful that dplyr provides a helper if all you want is a
count:
```{r}
not_cancelled %>% count(dest)
```
You can optionally provide a weight variable. For example, you could use
this to "count" (sum) the total number of miles a plane flew:
```{r}
not_cancelled %>%
count(tailnum, wt = distance)
```
* Counts and proportions of logical values: `sum(x > 10)`, `mean(y == 0)`.
When used with numeric functions, `TRUE` is converted to 1 and `FALSE` to 0.
This makes `sum()` and `mean()` particularly useful: `sum(x)` gives the
number of `TRUE`s in `x`, and `mean(x)` gives the proportion.
```{r}
# How many flights left before 5am? (these usually indicate delayed
# flights from the previous day)
not_cancelled %>%
group_by(year, month, day) %>%
summarise(n_early = sum(dep_time < 500))
# What proportion of flights are delayed by more than an hour?
not_cancelled %>%
group_by(year, month, day) %>%
summarise(hour_perc = mean(arr_delay > 60, na.rm = TRUE))
```
### Grouping by multiple variables
When you group by multiple variables, each summary peels off one level of the grouping. That makes it easy to progressively roll-up a dataset:
```{r}
daily <- group_by(flights, year, month, day)
(per_day <- summarise(daily, flights = n()))
(per_month <- summarise(per_day, flights = sum(flights)))
(per_year <- summarise(per_month, flights = sum(flights)))
```
Be careful when progressively rolling up summaries: it's OK for sums and counts, but you need to think about weighting for means and variances, and it's not possible to do it exactly for rank-based statistics like the median (i.e. the sum of groupwise sums is the overall sum, but the median of groupwise medians is not the overall median).
### Ungrouping
If you need to remove grouping, and return to operations on ungrouped data, use `ungroup()`.
```{r}
daily %>%
ungroup() %>% # no longer grouped by date
summarise(flights = n()) # all flights
```
### Exercises
1. Brainstorm at least 5 different ways to assess the typical delay
characteristics of a group of flights. Consider the following scenarios:
* A flight is 15 minutes early 50% of the time, and 15 minutes late 50% of
the time.
* A flight is always 10 minutes late.
* A flight is 30 minutes early 50% of the time, and 30 minutes late 50% of
the time.
* 99% of the time a flight is on time. 1% of the time it's 2 hours late.
Which is more important: arrival delay or departure delay?
1. Look at the number of cancelled flights per day. Is there are pattern?
Is the proportion of cancelled flights related to the average delay?
1. Which carrier has the worst delays? Challenge: can you disentangle the
effects of bad airports vs. bad carriers? Why/why not? (Hint: think about
`flights %>% group_by(carrier, dest) %>% summarise(n())`)
## Grouped mutates (and filters)
Grouping is most useful in conjunction with `summarise()`, but you can also do convenient operations with `mutate()` and `filter()`:
* Find the worst members of each group:
```{r}
flights %>%
group_by(year, month, day) %>%
filter(rank(arr_delay) < 10)
```
* Find all groups bigger than a threshold:
```{r}
popular_dests <- flights %>%
group_by(dest) %>%
filter(n() > 365)
```
* Standardise to compute per group metrics:
```{r}
popular_dests %>%
filter(arr_delay > 0) %>%
mutate(prop_delay = arr_delay / sum(arr_delay))
```
A grouped filter is a grouped mutate followed by an ungrouped filter. I generally avoid them except for quick and dirty manipulations: otherwise it's hard to check that you've done the manipulation correctly.
Functions that work most naturally in grouped mutates and filters are known as window functions (vs. summary functions used for summaries). You can learn more about useful window functions in the corresponding vignette: `vignette("window-functions")`.
### Exercises
1. Refer back to the table of useful mutate and filtering functions.
Describe how each operation changes when you combine it with grouping.
1. Which plane (`tailnum`) has the worst on-time record?
1. What time of day should you fly if you want to avoid delays as much
as possible?
1. Delays are typically temporally correlated: even once the problem that
caused the initial delay has been resolved, later flights are delayed
to allow earlier flights to leave. Using `lag()` explore how the delay
of a flight is related to the delay of the flight that left just
before.
1. Look at each destination. Can you find flights that are suspiciously
fast? (i.e. flights that represent a potential data entry error). Compute
the air time a flight relative to the shortest flight to that destination.
Which flights were most delayed in the air?
1. Find all destinations that are flown by at least two carriers. Use that
information to rank the carriers.