forked from google-research/google-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
loss.py
425 lines (356 loc) · 15.1 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
# coding=utf-8
# Copyright 2021 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Robust Bi-Tempered Logistic Loss Based on Bregman Divergences.
Source: https://bit.ly/3jSol8T
"""
import functools
import tensorflow as tf
def for_loop(num_iters, body, initial_args):
"""Runs a simple for-loop with given body and initial_args.
Args:
num_iters: Maximum number of iterations.
body: Body of the for-loop.
initial_args: Args to the body for the first iteration.
Returns:
Output of the final iteration.
"""
for i in range(num_iters):
if i == 0:
outputs = body(*initial_args)
else:
outputs = body(*outputs)
return outputs
def log_t(u, t):
"""Compute log_t for `u`."""
def _internal_log_t(u, t):
return (u**(1.0 - t) - 1.0) / (1.0 - t)
return tf.cond(
tf.equal(t, 1.0), lambda: tf.math.log(u),
functools.partial(_internal_log_t, u, t))
def exp_t(u, t):
"""Compute exp_t for `u`."""
def _internal_exp_t(u, t):
return tf.nn.relu(1.0 + (1.0 - t) * u)**(1.0 / (1.0 - t))
return tf.cond(
tf.equal(t, 1.0), lambda: tf.math.exp(u),
functools.partial(_internal_exp_t, u, t))
def compute_normalization_fixed_point(activations, t, num_iters=5):
"""Returns the normalization value for each example (t > 1.0).
Args:
activations: A multi-dimensional tensor with last dimension `num_classes`.
t: Temperature 2 (> 1.0 for tail heaviness).
num_iters: Number of iterations to run the method.
Return: A tensor of same rank as activation with the last dimension being 1.
"""
mu = tf.reduce_max(activations, -1, True)
normalized_activations_step_0 = activations - mu
shape_normalized_activations = tf.shape(normalized_activations_step_0)
def iter_body(i, normalized_activations):
logt_partition = tf.reduce_sum(
exp_t(normalized_activations, t), -1, True)
normalized_activations_t = tf.reshape(
normalized_activations_step_0 * tf.pow(logt_partition, 1.0 - t),
shape_normalized_activations)
return [i + 1, normalized_activations_t]
_, normalized_activations_t = for_loop(num_iters, iter_body,
[0, normalized_activations_step_0])
logt_partition = tf.reduce_sum(
exp_t(normalized_activations_t, t), -1, True)
return -log_t(1.0 / logt_partition, t) + mu
def compute_normalization_binary_search(activations, t, num_iters=10):
"""Returns the normalization value for each example (t < 1.0).
Args:
activations: A multi-dimensional tensor with last dimension `num_classes`.
t: Temperature 2 (< 1.0 for finite support).
num_iters: Number of iterations to run the method.
Return: A tensor of same rank as activation with the last dimension being 1.
"""
mu = tf.reduce_max(activations, -1, True)
normalized_activations = activations - mu
shape_activations = tf.shape(activations)
effective_dim = tf.cast(
tf.reduce_sum(
tf.cast(
tf.greater(normalized_activations, -1.0 / (1.0 - t)), tf.int32),
-1,
True), tf.float32)
shape_partition = tf.concat([shape_activations[:-1], [1]], 0)
lower = tf.zeros(shape_partition)
upper = -log_t(1.0 / effective_dim, t) * tf.ones(shape_partition)
def iter_body(i, lower, upper):
logt_partition = (upper + lower)/2.0
sum_probs = tf.reduce_sum(exp_t(
normalized_activations - logt_partition, t), -1, True)
update = tf.cast(tf.less(sum_probs, 1.0), tf.float32)
lower = tf.reshape(lower * update + (1.0 - update) * logt_partition,
shape_partition)
upper = tf.reshape(upper * (1.0 - update) + update * logt_partition,
shape_partition)
return [i + 1, lower, upper]
_, lower, upper = for_loop(num_iters, iter_body, [0, lower, upper])
logt_partition = (upper + lower)/2.0
return logt_partition + mu
def compute_normalization(activations, t, num_iters=5):
"""Returns the normalization value for each example.
Args:
activations: A multi-dimensional tensor with last dimension `num_classes`.
t: Temperature 2 (< 1.0 for finite support, > 1.0 for tail heaviness).
num_iters: Number of iterations to run the method.
Return: A tensor of same rank as activation with the last dimension being 1.
"""
return tf.cond(
tf.less(t, 1.0),
functools.partial(compute_normalization_binary_search, activations, t,
num_iters),
functools.partial(compute_normalization_fixed_point, activations, t,
num_iters))
def _internal_bi_tempered_logistic_loss(activations, labels, t1, t2):
"""Computes the Bi-Tempered logistic loss.
Args:
activations: A multi-dimensional tensor with last dimension `num_classes`.
labels: batch_size
t1: Temperature 1 (< 1.0 for boundedness).
t2: Temperature 2 (> 1.0 for tail heaviness).
Returns:
A loss tensor for robust loss.
"""
if t2 == 1.0:
normalization_constants = tf.math.log(
tf.reduce_sum(tf.math.exp(activations), -1, True))
if t1 == 1.0:
return normalization_constants + tf.reduce_sum(
tf.multiply(labels, tf.math.log(labels + 1e-10) - activations), -1)
else:
shifted_activations = tf.math.exp(activations - normalization_constants)
one_minus_t1 = (1.0 - t1)
one_minus_t2 = 1.0
else:
one_minus_t1 = (1.0 - t1)
one_minus_t2 = (1.0 - t2)
normalization_constants = compute_normalization(
activations, t2, num_iters=5)
shifted_activations = tf.nn.relu(1.0 + one_minus_t2 *
(activations - normalization_constants))
if t1 == 1.0:
return tf.reduce_sum(
tf.multiply(
tf.math.log(labels + 1e-10) -
tf.math.log(tf.pow(shifted_activations, 1.0 / one_minus_t2)),
labels), -1)
else:
beta = 1.0 + one_minus_t1
logt_probs = (tf.pow(shifted_activations, one_minus_t1 / one_minus_t2) -
1.0) / one_minus_t1
return tf.reduce_sum(
tf.multiply(log_t(labels, t1) - logt_probs, labels) - 1.0 / beta *
(tf.pow(labels, beta) -
tf.pow(shifted_activations, beta / one_minus_t2)), -1)
def tempered_sigmoid(activations, t, num_iters=5):
"""Tempered sigmoid function.
Args:
activations: Activations for the positive class for binary classification.
t: Temperature tensor > 0.0.
num_iters: Number of iterations to run the method.
Returns:
A probabilities tensor.
"""
t = tf.convert_to_tensor(t)
input_shape = tf.shape(activations)
activations_2d = tf.reshape(activations, [-1, 1])
internal_activations = tf.concat(
[tf.zeros_like(activations_2d), activations_2d], 1)
normalization_constants = tf.cond(
# pylint: disable=g-long-lambda
tf.equal(t, 1.0),
lambda: tf.math.log(
tf.reduce_sum(tf.math.exp(internal_activations), -1, True)),
functools.partial(compute_normalization, internal_activations, t,
num_iters))
internal_probabilities = exp_t(internal_activations - normalization_constants,
t)
one_class_probabilities = tf.split(internal_probabilities, 2, axis=1)[1]
return tf.reshape(one_class_probabilities, input_shape)
def tempered_softmax(activations, t, num_iters=5):
"""Tempered softmax function.
Args:
activations: A multi-dimensional tensor with last dimension `num_classes`.
t: Temperature tensor > 0.0.
num_iters: Number of iterations to run the method.
Returns:
A probabilities tensor.
"""
t = tf.convert_to_tensor(t)
normalization_constants = tf.cond(
tf.equal(t, 1.0),
lambda: tf.math.log(tf.reduce_sum(tf.math.exp(activations), -1, True)),
functools.partial(compute_normalization, activations, t, num_iters))
return exp_t(activations - normalization_constants, t)
def bi_tempered_binary_logistic_loss(activations,
labels,
t1,
t2,
label_smoothing=0.0,
num_iters=5):
"""Bi-Tempered binary logistic loss.
Args:
activations: A tensor containing activations for class 1.
labels: A tensor with shape and dtype as activations.
t1: Temperature 1 (< 1.0 for boundedness).
t2: Temperature 2 (> 1.0 for tail heaviness, < 1.0 for finite support).
label_smoothing: Label smoothing
num_iters: Number of iterations to run the method.
Returns:
A loss tensor.
"""
with tf.name_scope('binary_bitempered_logistic'):
t1 = tf.convert_to_tensor(t1)
t2 = tf.convert_to_tensor(t2)
out_shape = tf.shape(labels)
labels_2d = tf.reshape(labels, [-1, 1])
activations_2d = tf.reshape(activations, [-1, 1])
internal_labels = tf.concat([1.0 - labels_2d, labels_2d], 1)
internal_logits = tf.concat([tf.zeros_like(activations_2d), activations_2d],
1)
losses = bi_tempered_logistic_loss(internal_logits, internal_labels, t1, t2,
label_smoothing, num_iters)
return tf.reshape(losses, out_shape)
def bi_tempered_logistic_loss(activations,
labels,
t1,
t2,
label_smoothing=0.0,
num_iters=5):
"""Bi-Tempered Logistic Loss with custom gradient.
Args:
activations: A multi-dimensional tensor with last dimension `num_classes`.
labels: A tensor with shape and dtype as activations.
t1: Temperature 1 (< 1.0 for boundedness).
t2: Temperature 2 (> 1.0 for tail heaviness, < 1.0 for finite support).
label_smoothing: Label smoothing parameter between [0, 1).
num_iters: Number of iterations to run the method.
Returns:
A loss tensor.
"""
with tf.name_scope('bitempered_logistic'):
t1 = tf.convert_to_tensor(t1)
t2 = tf.convert_to_tensor(t2)
if label_smoothing > 0.0:
num_classes = tf.cast(tf.shape(labels)[-1], tf.float32)
labels = (
1 - num_classes /
(num_classes - 1) * label_smoothing) * labels + label_smoothing / (
num_classes - 1)
@tf.custom_gradient
def _custom_gradient_bi_tempered_logistic_loss(activations):
"""Bi-Tempered Logistic Loss with custom gradient.
Args:
activations: A multi-dimensional tensor with last dim `num_classes`.
Returns:
A loss tensor, grad.
"""
with tf.name_scope('gradient_bitempered_logistic'):
probabilities = tempered_softmax(activations, t2, num_iters)
loss_values = tf.multiply(
labels,
log_t(labels + 1e-10, t1) -
log_t(probabilities, t1)) - 1.0 / (2.0 - t1) * (
tf.pow(labels, 2.0 - t1) - tf.pow(probabilities, 2.0 - t1))
def grad(d_loss):
"""Explicit gradient calculation.
Args:
d_loss: Infinitesimal change in the loss value.
Returns:
Loss gradient.
"""
delta_probs = probabilities - labels
forget_factor = tf.pow(probabilities, t2 - t1)
delta_probs_times_forget_factor = tf.multiply(delta_probs,
forget_factor)
delta_forget_sum = tf.reduce_sum(
delta_probs_times_forget_factor, -1, True)
escorts = tf.pow(probabilities, t2)
escorts = escorts / tf.reduce_sum(escorts, -1, True)
derivative = delta_probs_times_forget_factor - tf.multiply(
escorts, delta_forget_sum)
return tf.multiply(d_loss, derivative)
return loss_values, grad
def reduced_loss(activations):
return tf.reduce_sum(
_custom_gradient_bi_tempered_logistic_loss(activations), -1)
loss_values = tf.cond(
tf.math.logical_and(tf.equal(t1, 1.0), tf.equal(t2, 1.0)),
functools.partial(
tf.nn.softmax_cross_entropy_with_logits,
labels=labels,
logits=activations), functools.partial(reduced_loss, activations))
return loss_values
def sparse_bi_tempered_logistic_loss(activations, labels, t1, t2, num_iters=5):
"""Sparse Bi-Tempered Logistic Loss with custom gradient.
Args:
activations: A multi-dimensional tensor with last dimension `num_classes`.
labels: A tensor with dtype of int32.
t1: Temperature 1 (< 1.0 for boundedness).
t2: Temperature 2 (> 1.0 for tail heaviness, < 1.0 for finite support).
num_iters: Number of iterations to run the method.
Returns:
A loss tensor.
"""
with tf.name_scope('sparse_bitempered_logistic'):
t1 = tf.convert_to_tensor(t1)
t2 = tf.convert_to_tensor(t2)
num_classes = tf.shape(activations)[-1]
@tf.custom_gradient
def _custom_gradient_sparse_bi_tempered_logistic_loss(activations):
"""Sparse Bi-Tempered Logistic Loss with custom gradient.
Args:
activations: A multi-dimensional tensor with last dim `num_classes`.
Returns:
A loss tensor, grad.
"""
with tf.name_scope('gradient_sparse_bitempered_logistic'):
probabilities = tempered_softmax(activations, t2, num_iters)
# TODO(eamid): Replace one hot with gather.
loss_values = -log_t(
tf.reshape(
tf.gather_nd(probabilities,
tf.where(tf.one_hot(labels, num_classes))),
tf.shape(activations)[:-1]), t1) - 1.0 / (2.0 - t1) * (
1.0 - tf.reduce_sum(tf.pow(probabilities, 2.0 - t1), -1))
def grad(d_loss):
"""Explicit gradient calculation.
Args:
d_loss: Infinitesimal change in the loss value.
Returns:
Loss gradient.
"""
delta_probs = probabilities - tf.one_hot(labels, num_classes)
forget_factor = tf.pow(probabilities, t2 - t1)
delta_probs_times_forget_factor = tf.multiply(delta_probs,
forget_factor)
delta_forget_sum = tf.reduce_sum(
delta_probs_times_forget_factor, -1, True)
escorts = tf.pow(probabilities, t2)
escorts = escorts / tf.reduce_sum(escorts, -1, True)
derivative = delta_probs_times_forget_factor - tf.multiply(
escorts, delta_forget_sum)
return tf.multiply(d_loss, derivative)
return loss_values, grad
loss_values = tf.cond(
tf.math.logical_and(tf.equal(t1, 1.0), tf.equal(t2, 1.0)),
functools.partial(tf.nn.sparse_softmax_cross_entropy_with_logits,
labels=labels, logits=activations),
functools.partial(_custom_gradient_sparse_bi_tempered_logistic_loss,
activations))
return loss_values