-
Notifications
You must be signed in to change notification settings - Fork 0
/
Intersect.js
474 lines (458 loc) · 22 KB
/
Intersect.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
var EPSILON = 10e-12;
var TOLERANCE = 10e-6;
var MAX_RECURSE = 10;
var MAX_ITERATE = 20;
/**
* This method is analogous to paperjs#PathItem.getIntersections
*/
function getIntersections2( path1, path2 ){
// First check the bounds of the two paths. If they don't intersect,
// we don't need to iterate through their curves.
if (!path1.getBounds().touches(path2.getBounds()))
return [];
var locations = [],
curves1 = path1.getCurves(),
curves2 = path2.getCurves(),
length2 = curves2.length,
values2 = [];
for (var i = 0; i < length2; i++)
values2[i] = curves2[i].getValues();
for (var i = 0, l = curves1.length; i < l; i++) {
var curve1 = curves1[i],
values1 = curve1.getValues();
for (var j = 0; j < length2; j++){
value2 = values2[j];
var v1Linear = Curve.isLinear(values1);
var v2Linear = Curve.isLinear(value2);
if( v1Linear && v2Linear ){
_getLineLineIntersection(values1, value2, curve1, curves2[j], locations);
} else if ( v1Linear || v2Linear ){
_getCurveLineIntersection(values1, value2, curve1, curves2[j], locations);
} else {
Curve.getIntersections2(values1, value2, curve1, curves2[j], locations);
}
}
}
return locations;
}
/**
* This method is analogous to paperjs#Curve.getIntersections
* @param {[type]} v1
* @param {[type]} v2
* @param {[type]} curve1
* @param {[type]} curve2
* @param {[type]} locations
* @param {[type]} _v1t - Only used for recusion
* @param {[type]} _v2t - Only used for recusion
*/
paper.Curve.getIntersections2 = function( v1, v2, curve1, curve2, locations, _v1t, _v2t, _recurseDepth ) {
_recurseDepth = _recurseDepth ? _recurseDepth + 1 : 1;
// Avoid endless recursion.
// Perhaps we should fall back to a more expensive method after this, but
// so far endless recursion happens only when there is no real intersection and
// the infinite fatline continue to intersect with the other curve outside its bounds!
if( _recurseDepth > MAX_RECURSE ) return;
// cache the original parameter range.
_v1t = _v1t || { t1: 0, t2: 1 };
_v2t = _v2t || { t1: 0, t2: 1 };
var v1t = { t1: _v1t.t1, t2: _v1t.t2 };
var v2t = { t1: _v2t.t1, t2: _v2t.t2 };
// Get the clipped parts from the original curve, to avoid cumulative errors
var _v1 = Curve.getPart( v1, v1t.t1, v1t.t2 );
var _v2 = Curve.getPart( v2, v2t.t1, v2t.t2 );
// markCurve( _v1, '#f0f', true );
// markCurve( _v2, '#0ff', false );
var nuT, parts, tmpt = { t1:null, t2:null }, iterate = 0;
// Loop until both parameter range converge. We have to handle the degenerate case
// seperately, where fat-line clipping can become numerically unstable when one of the
// curves has converged to a point and the other hasn't.
while( iterate < MAX_ITERATE &&
( Math.abs(v1t.t2 - v1t.t1) > TOLERANCE || Math.abs(v2t.t2 - v2t.t1) > TOLERANCE ) ){
++iterate;
// First we clip v2 with v1's fat-line
tmpt.t1 = v2t.t1; tmpt.t2 = v2t.t2;
var intersects1 = _clipBezierFatLine( _v1, _v2, tmpt );
// Stop if there are no possible intersections
if( intersects1 === 0 ){
return;
} else if( intersects1 > 0 ){
// Get the clipped parts from the original v2, to avoid cumulative errors
// ...and reuse some objects.
v2t.t1 = tmpt.t1; v2t.t2 = tmpt.t2;
_v2 = Curve.getPart( v2, v2t.t1, v2t.t2 );
// markCurve( _v2, '#0ff', false );
// Next we clip v1 with nuv2's fat-line
tmpt.t1 = v1t.t1; tmpt.t2 = v1t.t2;
var intersects2 = _clipBezierFatLine( _v2, _v1, tmpt );
// Stop if there are no possible intersections
if( intersects2 === 0 ){
return;
}else if( intersects1 > 0 ){
// Get the clipped parts from the original v2, to avoid cumulative errors
v1t.t1 = tmpt.t1; v1t.t2 = tmpt.t2;
_v1 = Curve.getPart( v1, v1t.t1, v1t.t2 );
}
// markCurve( _v1, '#f0f', true );
}
// Get the clipped parts from the original v1
// Check if there could be multiple intersections
if( intersects1 < 0 || intersects2 < 0 ){
// Subdivide the curve which has converged the least from the original range [0,1],
// which would be the curve with the largest parameter range after clipping
if( v1t.t2 - v1t.t1 > v2t.t2 - v2t.t1 ){
// subdivide _v1 and recurse
nuT = ( _v1t.t1 + _v1t.t2 ) / 2.0;
Curve.getIntersections2( v1, v2, curve1, curve2, locations, { t1: _v1t.t1, t2: nuT }, _v2t, _recurseDepth );
Curve.getIntersections2( v1, v2, curve1, curve2, locations, { t1: nuT, t2: _v1t.t2 }, _v2t, _recurseDepth );
return;
} else {
// subdivide _v2 and recurse
nuT = ( _v2t.t1 + _v2t.t2 ) / 2.0;
Curve.getIntersections2( v1, v2, curve1, curve2, locations, _v1t, { t1: _v2t.t1, t2: nuT }, _recurseDepth );
Curve.getIntersections2( v1, v2, curve1, curve2, locations, _v1t, { t1: nuT, t2: _v2t.t2 }, _recurseDepth );
return;
}
}
// We need to bailout of clipping and try a numerically stable method if
// any of the following are true.
// 1. One of the parameter ranges is converged to a point.
// 2. Both of the parameter ranges have converged reasonably well ( according to TOLERENCE ).
// 3. One of the parameter range is converged enough so that it is *flat enough* to
// calculate line curve intersection implicitly.
//
// Check if one of the parameter range has converged completely to a point.
// Now things could get only worse if we iterate more for the other
// curve to converge if it hasn't yet happened so.
if( Math.abs(v1t.t2 - v1t.t1) < EPSILON ){
locations.push(new CurveLocation(curve1, v1t.t1, curve1.getPointAt(v1t.t1, true), curve2));
return;
}else if( Math.abs(v2t.t2 - v2t.t1) < EPSILON ){
locations.push(new CurveLocation(curve1, null, curve2.getPointAt(v1t.t1, true), curve2));
return;
}
// Check to see if both parameter ranges have converged or else,
// see if either or both of the curves are flat enough to be treated as lines
if( Math.abs(v1t.t2 - v1t.t1) <= TOLERANCE || Math.abs(v2t.t2 - v2t.t1) <= TOLERANCE ){
locations.push(new CurveLocation(curve1, v1t.t1, curve1.getPointAt(v1t.t1, true), curve2));
return;
} else {
var curve1Flat = Curve.isFlatEnough( _v1, /*#=*/ TOLERANCE );
var curve2Flat = Curve.isFlatEnough( _v2, /*#=*/ TOLERANCE );
if ( curve1Flat && curve2Flat ) {
_getLineLineIntersection( _v1, _v2, curve1, curve2, locations );
return;
} else if( curve1Flat || curve2Flat ){
// Use curve line intersection method while specifying which curve to be treated as line
_getCurveLineIntersection( _v1, _v2, curve1, curve2, locations, curve1Flat );
return;
}
}
}
};
/**
* Clip curve V2 with fat-line of v1
* @param {Array} v1 - Section of the first curve, for which we will make a fat-line
* @param {Array} v2 - Section of the second curve; we will clip this curve with the fat-line of v1
* @param {Object} v2t - The parameter range of v2
* @return {number} -> 0 -no Intersection, 1 -one intersection, -1 -more than one intersection
*/
function _clipBezierFatLine( v1, v2, v2t ){
// first curve, P
var p0x = v1[0], p0y = v1[1], p3x = v1[6], p3y = v1[7];
var p1x = v1[2], p1y = v1[3], p2x = v1[4], p2y = v1[5];
// second curve, Q
var q0x = v2[0], q0y = v2[1], q3x = v2[6], q3y = v2[7];
var q1x = v2[2], q1y = v2[3], q2x = v2[4], q2y = v2[5];
// Calculate the fat-line L for P is the baseline l and two
// offsets which completely encloses the curve P.
var d1 = _getSignedDist( p0x, p0y, p3x, p3y, p1x, p1y ) || 0;
var d2 = _getSignedDist( p0x, p0y, p3x, p3y, p2x, p2y ) || 0;
var dmin, dmax;
if( d1 * d2 > 0){
// 3/4 * min{0, d1, d2}
dmin = 0.75 * Math.min( 0, d1, d2 );
dmax = 0.75 * Math.max( 0, d1, d2 );
} else {
// 4/9 * min{0, d1, d2}
dmin = 0.4444444444444444 * Math.min( 0, d1, d2 );
dmax = 0.4444444444444444 * Math.max( 0, d1, d2 );
}
// Calculate non-parametric bezier curve D(ti, di(t)) -
// di(t) is the distance of Q from the baseline l of the fat-line,
// ti is equally spaced in [0,1]
var dq0 = _getSignedDist( p0x, p0y, p3x, p3y, q0x, q0y );
var dq1 = _getSignedDist( p0x, p0y, p3x, p3y, q1x, q1y );
var dq2 = _getSignedDist( p0x, p0y, p3x, p3y, q2x, q2y );
var dq3 = _getSignedDist( p0x, p0y, p3x, p3y, q3x, q3y );
// Find the minimum and maximum distances from l,
// this is useful for checking whether the curves intersect with each other or not.
var mindist = Math.min( dq0, dq1, dq2, dq3 );
var maxdist = Math.max( dq0, dq1, dq2, dq3 );
// If the fatlines don't overlap, we have no intersections!
if( dmin > maxdist || dmax < mindist ){
return 0;
}
var tmp;
if( dq3 < dq0 ){
tmp = dmin; dmin = dmax; dmax = tmp;
}
// Calculate the convex hull for non-parametric bezier curve D(ti, di(t))
var Dt = _convexhull( dq0, dq1, dq2, dq3 );
// Now we clip the convex hulls for D(ti, di(t)) with dmin and dmax
// for the coorresponding t values (tmin, tmax):
// Portions of curve v2 before tmin and after tmax can safely be clipped away
var tmaxdmin = -Infinity, ixd, ixdx, i, len, inv_m;
var tmin = Infinity, tmax = -Infinity, Dtl, dtlx1, dtly1, dtlx2, dtly2;
for (i = 0, len = Dt.length; i < len; i++) {
Dtl = Dt[i];
dtlx1 = Dtl[0]; dtly1 = Dtl[1]; dtlx2 = Dtl[2]; dtly2 = Dtl[3];
if( dtly2 < dtly1 ){
tmp = dtly2; dtly2 = dtly1; dtly1 = tmp;
tmp = dtlx2; dtlx2 = dtlx1; dtlx1 = tmp;
}
// we know that (dtlx2 - dtlx1) is never 0
inv_m = (dtly2 - dtly1) / (dtlx2 - dtlx1);
if( dmin >= dtly1 && dmin <= dtly2 ){
ixdx = dtlx1 + (dmin - dtly1) / inv_m;
if ( ixdx < tmin ) tmin = ixdx;
if ( ixdx > tmaxdmin ) tmaxdmin = ixdx;
}
if( dmax >= dtly1 && dmax <= dtly2 ){
ixdx = dtlx1 + (dmax - dtly1) / inv_m;
if( ixdx > tmax ) tmax = ixdx;
if( ixdx < tmin ) tmin = 0;
}
}
// Return the parameter values for v2 for which we can be sure that the
// intersection with v1 lies within.
if(tmin === Infinity || tmax === -Infinity){
return -1;
}
if( tmaxdmin > tmax ){ tmax = 1; }
// Debug: Plot the non-parametric graph and hull
// plotD_vs_t( 500, 110, Dt, [dq0, dq1, dq2, dq3], v1, dmin, dmax, tmin, tmax, 1.0 / ( tmax - tmin + 0.3 ) )
// tmin and tmax are within the range (0, 1). We need to project it to the original
// parameter range for v2.
var v2tmin = v2t.t1;
var tdiff = ( v2t.t2 - v2tmin );
v2t.t1 = v2tmin + tmin * tdiff;
v2t.t2 = v2tmin + tmax * tdiff;
// If the new parameter range fails to converge by atleast 20% of the original range,
// possibly we have multiple intersections. We need to subdivide one of the curves.
if( (tdiff - ( v2t.t2 - v2t.t1 ))/tdiff < 0.2 ){
return -1;
}
return 1;
}
/**
* Calculate the convex hull for the non-paramertic bezier curve D(ti, di(t)).
* The ti is equally spaced across [0..1] — [0, 1/3, 2/3, 1] for
* di(t), [dq0, dq1, dq2, dq3] respectively. In other words our CVs for the curve are
* already sorted in the X axis in the increasing order. Calculating convex-hull is
* much easier than a set of arbitrary points.
*/
function _convexhull( dq0, dq1, dq2, dq3 ){
var distq1 = _getSignedDist( 0.0, dq0, 1.0, dq3, 0.3333333333333333, dq1 );
var distq2 = _getSignedDist( 0.0, dq0, 1.0, dq3, 0.6666666666666666, dq2 );
// Check if [1/3, dq1] and [2/3, dq2] are on the same side of line [0,dq0, 1,dq3]
if( distq1 * distq2 < 0 ) {
// dq1 and dq2 lie on different sides on [0, q0, 1, q3]
// Convexhull is a quadrilateral and line [0, q0, 1, q3] is NOT part of the convexhull
// so we are pretty much done here.
Dt = [
[ 0.0, dq0, 0.3333333333333333, dq1 ],
[ 0.3333333333333333, dq1, 1.0, dq3 ],
[ 0.6666666666666666, dq2, 0.0, dq0 ],
[ 1.0, dq3, 0.6666666666666666, dq2 ]
];
} else {
// dq1 and dq2 lie on the same sides on [0, q0, 1, q3]
// Convexhull can be a triangle or a quadrilateral and
// line [0, q0, 1, q3] is part of the convexhull.
// Check if the hull is a triangle or a quadrilateral
var dqmin, dqmax, dqapex1, dqapex2;
distq1 = Math.abs(distq1);
distq2 = Math.abs(distq2);
var vqa1a2x, vqa1a2y, vqa1Maxx, vqa1Maxy, vqa1Minx, vqa1Miny;
if( distq1 > distq2 ){
dqmin = [ 0.6666666666666666, dq2 ];
dqmax = [ 0.3333333333333333, dq1 ];
// apex is dq3 and the other apex point is dq0
// vector dqapex->dqapex2 or the base vector which is already part of c-hull
vqa1a2x = 1.0, vqa1a2y = dq3 - dq0;
// vector dqapex->dqmax
vqa1Maxx = 0.6666666666666666, vqa1Maxy = dq3 - dq1;
// vector dqapex->dqmin
vqa1Minx = 0.3333333333333333, vqa1Miny = dq3 - dq2;
} else {
dqmin = [ 0.3333333333333333, dq1 ];
dqmax = [ 0.6666666666666666, dq2 ];
// apex is dq0 in this case, and the other apex point is dq3
// vector dqapex->dqapex2 or the base vector which is already part of c-hull
vqa1a2x = -1.0, vqa1a2y = dq0 - dq3;
// vector dqapex->dqmax
vqa1Maxx = -0.6666666666666666, vqa1Maxy = dq0 - dq2;
// vector dqapex->dqmin
vqa1Minx = -0.3333333333333333, vqa1Miny = dq0 - dq1;
}
// compare cross products of these vectors to determine, if
// point is in triangles [ dq3, dqMax, dq0 ] or [ dq0, dqMax, dq3 ]
var vcrossa1a2_a1Min = vqa1a2x * vqa1Miny - vqa1a2y * vqa1Minx;
var vcrossa1Max_a1Min = vqa1Maxx * vqa1Miny - vqa1Maxy * vqa1Minx;
if( vcrossa1Max_a1Min * vcrossa1a2_a1Min < 0 ){
// Point [2/3, dq2] is inside the triangle and the convex hull is a triangle
Dt = [
[ 0.0, dq0, dqmax[0], dqmax[1] ],
[ dqmax[0], dqmax[1], 1.0, dq3 ],
[ 1.0, dq3, 0.0, dq0 ]
];
} else {
// Convexhull is a quadrilateral and we need all lines in the correct order where
// line [0, q0, 1, q3] is part of the convex hull
Dt = [
[ 0.0, dq0, 0.3333333333333333, dq1 ],
[ 0.3333333333333333, dq1, 0.6666666666666666, dq2 ],
[ 0.6666666666666666, dq2, 1.0, dq3 ],
[ 1.0, dq3, 0.0, dq0 ]
];
}
}
return Dt;
}
function drawFatline( v1 ) {
function signum(num) {
return ( num > 0 )? 1 : ( num < 0 )? -1 : 0;
}
var l = new Line( [v1[0], v1[1]], [v1[6], v1[7]], false );
var p1 = new Point( v1[2], v1[3] ), p2 = new Point( v1[4], v1[5] );
var d1 = l.getSide( p1 ) * l.getDistance( p1 ) || 0;
var d2 = l.getSide( p2 ) * l.getDistance( p2 ) || 0;
var dmin, dmax;
if( d1 * d2 > 0){
// 3/4 * min{0, d1, d2}
dmin = 0.75 * Math.min( 0, d1, d2 );
dmax = 0.75 * Math.max( 0, d1, d2 );
} else {
// 4/9 * min{0, d1, d2}
dmin = 4 * Math.min( 0, d1, d2 ) / 9.0;
dmax = 4 * Math.max( 0, d1, d2 ) / 9.0;
}
var ll = new Path.Line( v1[0], v1[1], v1[6], v1[7] );
window.__p3.push( ll );
window.__p3[window.__p3.length-1].style.strokeColor = new Color( 0,0,0.9, 0.8);
var lp1 = ll.segments[0].point;
var lp2 = ll.segments[1].point;
var pm = l.vector, pm1 = pm.rotate( signum( dmin ) * -90 ), pm2 = pm.rotate( signum( dmax ) * -90 );
var p11 = lp1.add( pm1.normalize( Math.abs(dmin) ) );
var p12 = lp2.add( pm1.normalize( Math.abs(dmin) ) );
var p21 = lp1.add( pm2.normalize( Math.abs(dmax) ) );
var p22 = lp2.add( pm2.normalize( Math.abs(dmax) ) );
window.__p3.push( new Path.Line( p11, p12 ) );
window.__p3[window.__p3.length-1].style.strokeColor = new Color( 0,0,0.9);
window.__p3.push( new Path.Line( p21, p22 ) );
window.__p3[window.__p3.length-1].style.strokeColor = new Color( 0,0,0.9);
}
function plotD_vs_t( x, y, arr, arr2, v, dmin, dmax, tmin, tmax, yscale, tvalue ){
yscale = yscale || 1;
new Path.Line( x, y-100, x, y+100 ).style.strokeColor = '#aaa';
new Path.Line( x, y, x + 200, y ).style.strokeColor = '#aaa';
var clr = (tvalue)? '#a00' : '#00a';
if( window.__p3 ) window.__p3.map(function(a){a.remove();});
window.__p3 = [];
drawFatline( v );
window.__p3.push( new Path.Line( x, y + dmin * yscale, x + 200, y + dmin * yscale ) );
window.__p3[window.__p3.length-1].style.strokeColor = '#000'
window.__p3.push( new Path.Line( x, y + dmax * yscale, x + 200, y + dmax * yscale ) );
window.__p3[window.__p3.length-1].style.strokeColor = '#000'
window.__p3.push( new Path.Line( x + tmin * 190, y-100, x + tmin * 190, y+100 ) );
window.__p3[window.__p3.length-1].style.strokeColor = clr
window.__p3.push( new Path.Line( x + tmax * 190, y-100, x + tmax * 190, y+100 ) );
window.__p3[window.__p3.length-1].style.strokeColor = clr
for (var i = 0; i < arr.length; i++) {
window.__p3.push( new Path.Line( new Point( x + arr[i][0] * 190, y + arr[i][1] * yscale ),
new Point( x + arr[i][2] * 190, y + arr[i][3] * yscale ) ) );
window.__p3[window.__p3.length-1].style.strokeColor = '#999';
}
var pnt = [];
var arr2x = [ 0.0, 0.333333333, 0.6666666666, 1.0 ];
for (var i = 0; i < arr2.length; i++) {
pnt.push( new Point( x + arr2x[i] * 190, y + arr2[i] * yscale ) );
window.__p3.push( new Path.Circle( pnt[pnt.length-1], 2 ) );
window.__p3[window.__p3.length-1].style.fillColor = '#000'
}
// var pth = new Path( pnt[0], pnt[1], pnt[2], pnt[3] );
// pth.closed = true;
window.__p3.push( new Path( new Segment(pnt[0], null, pnt[1].subtract(pnt[0])), new Segment( pnt[3], pnt[2].subtract(pnt[3]), null ) ) );
window.__p3[window.__p3.length-1].style.strokeColor = clr
view.draw();
}
// This is basically an "unrolled" version of #Line.getDistance() with sign
// May be a static method could be better!
var _getSignedDist = function( a1x, a1y, a2x, a2y, bx, by ){
var vx = a2x - a1x, vy = a2y - a1y;
var m = vy / vx, b = a1y - ( m * a1x );
return ( by - ( m * bx ) - b ) / Math.sqrt( m*m + 1 );
};
/**
* Intersections between curve and line becomes rather simple here mostly
* because of paperjs Numerical class. We can rotate the curve and line so that
* the line is on X axis, and solve the implicit equations for X axis and the curve
*/
var _getCurveLineIntersection = function( v1, v2, curve1, curve2, locations, _other ){
var i, root, point, vc = v1, vl = v2;
var other = ( _other === undefined )? Curve.isLinear( v1 ) : _other;
if( other ){
vl = v1;
vc = v2;
}
var l1x = vl[0], l1y = vl[1], l2x = vl[6], l2y = vl[7];
// rotate both the curve and line around l1 so that line is on x axis
var lvx = l2x - l1x, lvy = l2y - l1y;
// Angle with x axis (1, 0)
var angle = Math.atan2( -lvy, lvx ), sina = Math.sin( angle ), cosa = Math.cos( angle );
// rotated line and curve values
// (rl1x, rl1y) = (0, 0)
var rl2x = lvx * cosa - lvy * sina, rl2y = lvy * cosa + lvx * sina;
var rvc = [];
for( i=0; i<8; i+=2 ){
var vcx = vc[i] - l1x, vcy = vc[i+1] - l1y;
rvc.push( vcx * cosa - vcy * sina );
rvc.push( vcy * cosa + vcx * sina );
}
var roots = [];
Curve.solveCubic(rvc, 1, 0, roots);
i = roots.length;
while( i-- ){
root = roots[i];
if( root >= 0 && root <= 1 ){
point = Curve.evaluate(rvc, root, true, 0);
// We do have a point on the infinite line. Check if it falls on the line *segment*.
if( point.x >= 0 && point.x <= rl2x ){
// The actual intersection point
point = Curve.evaluate(vc, root, true, 0);
if( other ) root = null;
var first = locations[0],
last = locations[locations.length - 1];
if ((!first || !point.equals(first._point))
&& (!last || !point.equals(last._point)))
locations.push( new CurveLocation( curve1, root, point, curve2 ) );
}
}
}
};
var _getLineLineIntersection = function( v1, v2, curve1, curve2, locations ){
var point = Line.intersect(
v1[0], v1[1], v1[6], v1[7],
v2[0], v2[1], v2[6], v2[7], false);
if (point) {
// Avoid duplicates when hitting segments (closed paths too)
var first = locations[0],
last = locations[locations.length - 1];
if ((!first || !point.equals(first._point))
&& (!last || !point.equals(last._point)))
// Passing null for parameter leads to lazy determination
// of parameter values in CurveLocation#getParameter()
// only once they are requested.
locations.push(new CurveLocation(curve1, null, point, curve2));
}
};